Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Start by exporting your data from Pocket. Pocket provides options to export your saved items in formats such as JSON or HTML. Access your Pocket account, navigate to the export options, and download the data in your preferred format. This gives you a local file containing all your saved items and metadata.
Once you have the exported file, the next step is to ensure the data is in a format that is compatible with ClickHouse. If your data is in JSON or HTML, consider converting it to CSV or TSV format. You may use scripting languages like Python or command-line tools like `jq` (for JSON) to parse and convert the data into rows and columns suitable for ClickHouse.
If ClickHouse is not already installed, you need to set it up. You can download and install ClickHouse directly from their official website. Follow the installation instructions for your operating system. Once installed, start the ClickHouse server to ensure it is running and accessible.
Define the schema for your ClickHouse table that matches the structure of your data. Use the ClickHouse client to execute a `CREATE TABLE` statement. For example, if your data includes fields like `item_id`, `title`, `url`, and `tags`, create columns for each of these fields with appropriate data types.
With the table created, use the ClickHouse client to load your data. You can use the `INSERT INTO` statement to populate the table with data from your CSV or TSV file. ClickHouse provides the `clickhouse-client` tool which you can use to execute a command like:
```bash
clickhouse-client --query="INSERT INTO your_table FORMAT CSV" < your_data.csv
```
Ensure the column order in the CSV matches the table schema.
After loading the data, run queries to verify that the data has been imported correctly. Use simple `SELECT` statements to check for the expected number of rows, and spot-check a few records to ensure the data matches the source. This step helps identify any discrepancies or issues with the import process.
If you need to move data regularly, consider automating the process using scripts. Write a script in Bash, Python, or another language that performs these steps, from exporting from Pocket and converting the format to loading the data into ClickHouse. Schedule the script using a cron job or task scheduler to run at desired intervals.
By following these steps, you can manually move data from Pocket to a ClickHouse warehouse without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Pocket, the premier Save for Later app, lets you consume and share content whenever you want, wherever you want, even without an internet connection. When you come across an article, video or a webpage you'd like to readbut can't at that time, save it to Pocket. You can then read or watch it whenever you have a moment, whether it's on the couch, during your commute, on the plane, train, or practically anywhere.
Pocket's API provides access to various types of data related to the user's Pocket account. The categories of data that can be accessed through the API are:
1. Articles: This includes the full text of articles saved by the user, along with metadata such as title, author, and URL.
2. Tags: The API allows access to the tags associated with each article, which can be used to organize and filter saved articles.
3. Favorites: The API provides access to the user's favorite articles, which can be used to highlight important or frequently referenced content.
4. Reads: The API tracks the user's reading history, including the date and time each article was read.
5. Recommendations: Pocket's API can provide personalized article recommendations based on the user's reading history and preferences.
6. Stats: The API provides access to various statistics related to the user's Pocket account, such as the number of articles saved, read, and favorited.
7. Authentication: The API allows developers to authenticate users and access their Pocket data securely.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





