Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by setting up your development environment. Install Python on your machine if it is not already available, as Python will be used to interact with both Pocket and Google Pub/Sub. Additionally, install the Google Cloud SDK to enable the use of Google Cloud services from your local environment.
Go to the Pocket developers' website and register a new application. This will provide you with a consumer key which is necessary to access your Pocket account programmatically. Take note of your consumer key as it will be used to authenticate API requests.
Use the Pocket API to authenticate and fetch data. You will use the `requests` library in Python to make HTTP requests. Start by authenticating using your consumer key to obtain an access token. Then, use this access token to make a request to the Pocket API to fetch the data you want to move, such as saved articles or URLs.
Log in to your Google Cloud Platform account and create a new project. Enable the Pub/Sub API for this project. You will need to ensure you have billing enabled for your Google Cloud account. Once the API is enabled, create a new Pub/Sub topic that will receive the data from Pocket.
Authenticate your application with Google Cloud using service account credentials. Create a new service account in the Google Cloud Console, download the JSON key file, and set the `GOOGLE_APPLICATION_CREDENTIALS` environment variable to point to this file. This will allow your Python script to securely interact with Google Cloud services.
Use the `google-cloud-pubsub` library in Python to publish the fetched data from Pocket to your Pub/Sub topic. First, install the library using pip. Then, create a client in your script using the credentials set up earlier, and publish each piece of data (e.g., each URL or article) as a message to the Pub/Sub topic you created.
Finally, verify that the data has been successfully published to Google Pub/Sub. You can do this by using the Google Cloud Console or the `gcloud` command-line tool to view the messages in your Pub/Sub topic. Ensure the data reflects what you fetched from Pocket, confirming that the end-to-end data movement process was successful.
By following these steps, you will have moved data from Pocket to Google Pub/Sub without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Pocket, the premier Save for Later app, lets you consume and share content whenever you want, wherever you want, even without an internet connection. When you come across an article, video or a webpage you'd like to readbut can't at that time, save it to Pocket. You can then read or watch it whenever you have a moment, whether it's on the couch, during your commute, on the plane, train, or practically anywhere.
Pocket's API provides access to various types of data related to the user's Pocket account. The categories of data that can be accessed through the API are:
1. Articles: This includes the full text of articles saved by the user, along with metadata such as title, author, and URL.
2. Tags: The API allows access to the tags associated with each article, which can be used to organize and filter saved articles.
3. Favorites: The API provides access to the user's favorite articles, which can be used to highlight important or frequently referenced content.
4. Reads: The API tracks the user's reading history, including the date and time each article was read.
5. Recommendations: Pocket's API can provide personalized article recommendations based on the user's reading history and preferences.
6. Stats: The API provides access to various statistics related to the user's Pocket account, such as the number of articles saved, read, and favorited.
7. Authentication: The API allows developers to authenticate users and access their Pocket data securely.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





