

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
To begin, ensure you have access to the PostHog API. Log into your PostHog account and navigate to the "Project Settings" where you can find the API keys. These keys will allow you to authenticate API requests to fetch data from PostHog.
Use the PostHog API to retrieve the data you want to move. This can be done using HTTP requests from a script or application. Use tools like `curl` or a programming language like Python with libraries such as `requests` to perform GET requests to the appropriate PostHog API endpoints. Ensure you handle pagination if the data size is large.
Once you have fetched the data, process it locally. This may involve transforming the data format to suit Firestore's structure, such as converting timestamps, flattening nested data, or filtering out unnecessary fields. Ensure the processed data matches the structure expected by your Firestore collections and documents.
Before importing data, set up your Google Firestore database in the Google Cloud Console. Create the necessary collections and documents that will store the data from PostHog. Ensure you have the necessary permissions to write to Firestore, and obtain the service account key file for authentication.
Use the service account key file to authenticate your application with Firestore. In Python, for example, you can utilize the `google-cloud-firestore` library. First, install the library using pip, then initialize a Firestore client in your script using the credentials from the service account key.
With the Firestore client initialized, write the processed data to Firestore. Iterate over the data items and use the Firestore client to add them to the appropriate collections. Each data item can be added as a document with an auto-generated ID or a custom ID if needed.
After the data is written to Firestore, verify its integrity. Check that all expected documents and fields are present and that the data matches what was retrieved from PostHog. You can do this by querying Firestore and comparing the results with the original data set.
By following these steps, you can efficiently transfer data from PostHog to Google Firestore while maintaining control over the entire process without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
PostHog is an open-source Product Analytics software-as-a-service (Saas) for developers, aimed at helping software teams better understand user behavior. Offering a private cloud option to alleviate GDPR concerns, it provides the features engineers need most: it helps them automate events, understand their product usage and user data collections, tracks which features are being triggered for product events, etc.
Posthog's API gives access to a wide range of data related to user behavior and interactions with a website or application. The following are the categories of data that can be accessed through Posthog's API:
1. Events: This includes data related to user actions such as clicks, page views, and form submissions.
2. Users: This includes data related to user profiles such as email addresses, names, and user IDs.
3. Sessions: This includes data related to user sessions such as session IDs, start and end times, and session duration.
4. Funnels: This includes data related to user journeys through a website or application such as the steps they take to complete a specific task.
5. Retention: This includes data related to user retention such as the percentage of users who return to a website or application after a certain period of time.
6. Cohorts: This includes data related to user groups such as users who signed up during a specific time period or users who completed a specific action.
7. Trends: This includes data related to changes in user behavior over time such as changes in the number of page views or clicks.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





