How to load data from PyPI to Oracle

Learn how to use Airbyte to synchronize your PyPI data into Oracle within minutes.

Trusted by data-driven companies

Building your pipeline or Using Airbyte

Airbyte is the only open source solution empowering data teams  to meet all their growing custom business demands in the new AI era.

Building in-house pipelines
Bespoke pipelines are:
  • Inconsistent and inaccurate data
  • Laborious and expensive
  • Brittle and inflexible
Furthermore, you will need to build and maintain Y x Z pipelines with Y sources and Z destinations to cover all your needs.
After Airbyte
Airbyte connections are:
  • Reliable and accurate
  • Extensible and scalable for all your needs
  • Deployed and governed your way
All your pipelines in minutes, however custom they are, thanks to Airbyte’s connector marketplace and AI Connector Builder.

Start syncing with Airbyte in 3 easy steps within 10 minutes

Set up a PyPI connector in Airbyte

Connect to PyPI or one of 400+ pre-built or 10,000+ custom connectors through simple account authentication.

Set up Oracle for your extracted PyPI data

Select Oracle where you want to import data from your PyPI source to. You can also choose other cloud data warehouses, databases, data lakes, vector databases, or any other supported Airbyte destinations.

Configure the PyPI to Oracle in Airbyte

This includes selecting the data you want to extract - streams and columns -, the sync frequency, where in the destination you want that data to be loaded.

Take a virtual tour

Check out our interactive demo and our how-to videos to learn how you can sync data from any source to any destination.

Demo video of Airbyte Cloud

Demo video of AI Connector Builder

Setup Complexities simplified!

You don’t need to put hours into figuring out how to use Airbyte to achieve your Data Engineering goals.

Simple & Easy to use Interface

Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.

Guided Tour: Assisting you in building connections

Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.

Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes

Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.

What sets Airbyte Apart

Modern GenAI Workflows

Streamline AI workflows with Airbyte: load unstructured data into vector stores like Pinecone, Weaviate, and Milvus. Supports RAG transformations with LangChain chunking and embeddings from OpenAI, Cohere, etc., all in one operation.

Move Large Volumes, Fast

Quickly get up and running with a 5-minute setup that enables both incremental and full refreshes for databases of any size, seamlessly scaling to handle large data volumes. Our optimized architecture overcomes performance bottlenecks, ensuring efficient data synchronization even as your datasets grow from gigabytes to petabytes.

An Extensible Open-Source Standard

More than 1,000 developers contribute to Airbyte’s connectors, different interfaces (UI, API, Terraform Provider, Python Library), and integrations with the rest of the stack. Airbyte’s AI Connector Builder lets you edit or add new connectors in minutes.

Full Control & Security

Airbyte secures your data with cloud-hosted, self-hosted or hybrid deployment options. Single Sign-On (SSO) and Role-Based Access Control (RBAC) ensure only authorized users have access with the right permissions. Airbyte acts as a HIPAA conduit and supports compliance with CCPA, GDPR, and SOC2.

Fully Featured & Integrated

Airbyte automates schema evolution for seamless data flow, and utilizes efficient Change Data Capture (CDC) for real-time updates. Select only the columns you need, and leverage our dbt integration for powerful data transformations.

Enterprise Support with SLAs

Airbyte Self-Managed Enterprise comes with dedicated support and guaranteed service level agreements (SLAs), ensuring that your data movement infrastructure remains reliable and performant, and expert assistance is available when needed.

What our users say

Andre Exner
Director of Customer Hub and Common Analytics

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Learn more
Chase Zieman headshot
Chase Zieman
Chief Data Officer

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Learn more
Rupak Patel
Operational Intelligence Manager

"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."

Learn more

How to Sync PyPI to Oracle Manually

First, identify the packages you want to transfer from PyPI. You can use Python to download these packages directly using the `pip download` command. This will download the package files to your local directory without installing them.

```bash
pip download
```

After downloading the package files (typically in `.tar.gz` or `.whl` formats), you need to extract the metadata. Use Python’s built-in libraries like `tarfile` or `zipfile` to extract files and read metadata from `PKG-INFO` or `METADATA` files within the package.

```python
import tarfile

with tarfile.open('package-name-version.tar.gz', 'r:gz') as tar:
tar.extractall(path='extracted_path')
```

Once extracted, parse the necessary metadata such as package name, version, author, license, and dependencies. This can be done by reading and processing the `METADATA` file, which is typically formatted similarly to an email message.

```python
from email import message_from_file

with open('extracted_path/package_name/METADATA') as f:
metadata = message_from_file(f)
```

Ensure you have access to an Oracle database where you have the necessary permissions to create tables and insert data. Use SQL to create a table structure that will store the package metadata.

```sql
CREATE TABLE pypi_packages (
package_name VARCHAR2(255),
version VARCHAR2(50),
author VARCHAR2(255),
license VARCHAR2(255),
dependencies CLOB
);
```

Use Python's `cx_Oracle` library to establish a connection to your Oracle database. Make sure you have the Oracle Instant Client installed and configured correctly.

```python
import cx_Oracle

connection = cx_Oracle.connect('username/password@hostname/SID')
cursor = connection.cursor()
```

With the connection established, write a script to insert the parsed metadata into the Oracle database. Ensure you handle exceptions and commit transactions properly.

```python
insert_query = """
INSERT INTO pypi_packages (package_name, version, author, license, dependencies)
VALUES (:package_name, :version, :author, :license, :dependencies)
"""

cursor.execute(insert_query, {
'package_name': metadata['Name'],
'version': metadata['Version'],
'author': metadata.get('Author', 'Unknown'),
'license': metadata.get('License', 'Unknown'),
'dependencies': ', '.join(metadata.get_all('Requires-Dist', []))
})
connection.commit()
```

Finally, verify that the data has been successfully transferred. Query the Oracle table to ensure the records match the expected data from the PyPI packages.

```python
cursor.execute("SELECT FROM pypi_packages")
for row in cursor.fetchall():
print(row)

cursor.close()
connection.close()
```

By following these steps, you can manually move data from PyPI to Oracle without relying on third-party connectors or integrations.

How to Sync PyPI to Oracle Manually - Method 2:

FAQs

ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.

The Python Package Index (PyPI) is a storehouse of software for the Python programming language. The Python Package Index abbreviated as PyPI and also non as the Cheese Shop is the official third-party software repository for Python. PyPI assists the users to search and install software that has been developed and shared by the Python community. PyPI, typically pronounced pie-pee-eye, is a repository containing several hundred thousand packages. The ability to provision PyPI packages from Artifact to the pip command line tool from all repository types.

PyPI's API provides access to a wide range of data related to Python packages and their metadata. The following are the categories of data that can be accessed through PyPI's API:  

1. Package information: This includes data related to the package name, version, description, author, license, and other metadata.  
2. Release information: This includes data related to the release date, download URL, and other information about each release of a package.  
3. Project information: This includes data related to the project's homepage, bug tracker, and other project-related information.  
4. User information: This includes data related to the user's account, such as their username, email address, and other profile information.  
5. Search results: This includes data related to the search results for a particular query, including package names, descriptions, and other metadata.  
6. Download statistics: This includes data related to the number of downloads for a particular package or release.  

Overall, PyPI's API provides a comprehensive set of data related to Python packages and their metadata, making it a valuable resource for developers and researchers.

This can be done by building a data pipeline manually, usually a Python script (you can leverage a tool as Apache Airflow for this). This process can take more than a full week of development. Or it can be done in minutes on Airbyte in three easy steps: 
1. Set up PyPI to Oracle DB as a source connector (using Auth, or usually an API key)
2. Choose a destination (more than 50 available destination databases, data warehouses or lakes) to sync data too and set it up as a destination connector
3. Define which data you want to transfer from PyPI to Oracle DB and how frequently
You can choose to self-host the pipeline using Airbyte Open Source or have it managed for you with Airbyte Cloud. 

ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.

ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.

What should you do next?

Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:

flag icon
Easily address your data movement needs with Airbyte Cloud
Take the first step towards extensible data movement infrastructure that will give a ton of time back to your data team. 
Get started with Airbyte for free
high five icon
Talk to a data infrastructure expert
Get a free consultation with an Airbyte expert to significantly improve your data movement infrastructure. 
Talk to sales
stars sparkling
Improve your data infrastructure knowledge
Subscribe to our monthly newsletter and get the community’s new enlightening content along with Airbyte’s progress in their mission to solve data integration once and for all.
Subscribe to newsletter