PyPI, the Python Package Index, hosts Python libraries for easy distribution and installation. It simplifies package management, ensuring developers can share and access code effortlessly.
Top companies trust Airbyte to centralize their Data
This includes selecting the data you want to extract - streams and columns -, the sync frequency, where in the destination you want that data to be loaded.
This includes selecting the data you want to extract - streams and columns -, the sync frequency, where in the destination you want that data to be loaded.
Set up a source connector to extract data from in Airbyte
Choose from one of 400 sources where you want to import data from. This can be any API tool, cloud data warehouse, database, data lake, files, among other source types. You can even build your own source connector in minutes with our no-code no-code connector builder.
Configure the connection in Airbyte
The Airbyte Open Data Movement Platform
The only open solution empowering data teams to meet growing business demands in the new AI era.
Leverage the largest catalog of connectors
Cover your custom needs with our extensibility
Free your time from maintaining connectors, with automation
- Automated schema change handling, data normalization and more
- Automated data transformation orchestration with our dbt integration
- Automated workflow with our Airflow, Dagster and Prefect integration
Reliability at every level
Ship more quickly with the only solution that fits ALL your needs.
As your tools and edge cases grow, you deserve an extensible and open ELT solution that eliminates the time you spend on building and maintaining data pipelines
Leverage the largest catalog of connectors
Cover your custom needs with our extensibility
Free your time from maintaining connectors, with automation
- Automated schema change handling, data normalization and more
- Automated data transformation orchestration with our dbt integration
- Automated workflow with our Airflow, Dagster and Prefect integration
Reliability at every level
Ship more quickly with the only solution that fits ALL your needs.
As your tools and edge cases grow, you deserve an extensible and open ELT solution that eliminates the time you spend on building and maintaining data pipelines
Leverage the largest catalog of connectors
Cover your custom needs with our extensibility
Free your time from maintaining connectors, with automation
- Automated schema change handling, data normalization and more
- Automated data transformation orchestration with our dbt integration
- Automated workflow with our Airflow, Dagster and Prefect integration
Reliability at every level
Move large volumes, fast.
Change Data Capture.
Security from source to destination.
We support the CDC methods your company needs
Log-based CDC
Timestamp-based CDC
Airbyte Open Source
Airbyte Cloud
Airbyte Enterprise
Why choose Airbyte as the backbone of your data infrastructure?
Keep your data engineering costs in check
Get Airbyte hosted where you need it to be
- Airbyte Cloud: Have it hosted by us, with all the security you need (SOC2, ISO, GDPR, HIPAA Conduit).
- Airbyte Enterprise: Have it hosted within your own infrastructure, so your data and secrets never leave it.
White-glove enterprise-level support
Including for your Airbyte Open Source instance with our premium support.
Airbyte supports a growing list of destinations, including cloud data warehouses, lakes, and databases.
Airbyte supports a growing list of destinations, including cloud data warehouses, lakes, and databases.
Airbyte supports a growing list of sources, including API tools, cloud data warehouses, lakes, databases, and files, or even custom sources you can build.
Fnatic, based out of London, is the world's leading esports organization, with a winning legacy of 16 years and counting in over 28 different titles, generating over 13m USD in prize money. Fnatic has an engaged follower base of 14m across their social media platforms and hundreds of millions of people watch their teams compete in League of Legends, CS:GO, Dota 2, Rainbow Six Siege, and many more titles every year.
Ready to get started?
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
The Python Package Index (PyPI) is a storehouse of software for the Python programming language. The Python Package Index abbreviated as PyPI and also non as the Cheese Shop is the official third-party software repository for Python. PyPI assists the users to search and install software that has been developed and shared by the Python community. PyPI, typically pronounced pie-pee-eye, is a repository containing several hundred thousand packages. The ability to provision PyPI packages from Artifact to the pip command line tool from all repository types.
PyPI's API provides access to a wide range of data related to Python packages and their metadata. The following are the categories of data that can be accessed through PyPI's API:
1. Package information: This includes data related to the package name, version, description, author, license, and other metadata.
2. Release information: This includes data related to the release date, download URL, and other information about each release of a package.
3. Project information: This includes data related to the project's homepage, bug tracker, and other project-related information.
4. User information: This includes data related to the user's account, such as their username, email address, and other profile information.
5. Search results: This includes data related to the search results for a particular query, including package names, descriptions, and other metadata.
6. Download statistics: This includes data related to the number of downloads for a particular package or release.
Overall, PyPI's API provides a comprehensive set of data related to Python packages and their metadata, making it a valuable resource for developers and researchers.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
The Python Package Index (PyPI) is a storehouse of software for the Python programming language. The Python Package Index abbreviated as PyPI and also non as the Cheese Shop is the official third-party software repository for Python. PyPI assists the users to search and install software that has been developed and shared by the Python community. PyPI, typically pronounced pie-pee-eye, is a repository containing several hundred thousand packages. The ability to provision PyPI packages from Artifact to the pip command line tool from all repository types.
PyPI's API provides access to a wide range of data related to Python packages and their metadata. The following are the categories of data that can be accessed through PyPI's API:
1. Package information: This includes data related to the package name, version, description, author, license, and other metadata.
2. Release information: This includes data related to the release date, download URL, and other information about each release of a package.
3. Project information: This includes data related to the project's homepage, bug tracker, and other project-related information.
4. User information: This includes data related to the user's account, such as their username, email address, and other profile information.
5. Search results: This includes data related to the search results for a particular query, including package names, descriptions, and other metadata.
6. Download statistics: This includes data related to the number of downloads for a particular package or release.
Overall, PyPI's API provides a comprehensive set of data related to Python packages and their metadata, making it a valuable resource for developers and researchers.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
The Python Package Index (PyPI) is a storehouse of software for the Python programming language. The Python Package Index abbreviated as PyPI and also non as the Cheese Shop is the official third-party software repository for Python. PyPI assists the users to search and install software that has been developed and shared by the Python community. PyPI, typically pronounced pie-pee-eye, is a repository containing several hundred thousand packages. The ability to provision PyPI packages from Artifact to the pip command line tool from all repository types.
PyPI's API provides access to a wide range of data related to Python packages and their metadata. The following are the categories of data that can be accessed through PyPI's API:
1. Package information: This includes data related to the package name, version, description, author, license, and other metadata.
2. Release information: This includes data related to the release date, download URL, and other information about each release of a package.
3. Project information: This includes data related to the project's homepage, bug tracker, and other project-related information.
4. User information: This includes data related to the user's account, such as their username, email address, and other profile information.
5. Search results: This includes data related to the search results for a particular query, including package names, descriptions, and other metadata.
6. Download statistics: This includes data related to the number of downloads for a particular package or release.
Overall, PyPI's API provides a comprehensive set of data related to Python packages and their metadata, making it a valuable resource for developers and researchers.
1. First, you need to create an API token in PyPI. To do this, go to your PyPI account settings and click on "API Tokens" in the left-hand menu. Then, click on "Add API Token" and give it a name. Copy the token that is generated.
2. In Airbyte, go to the "Sources" tab and click on "Create a new Source". Select "PyPI" from the list of available connectors.
3. In the PyPI source configuration page, enter a name for your source and paste the API token you copied in step 1 into the "API Token" field.
4. In the "Package Name" field, enter the name of the package you want to sync data from.
5. In the "Start Date" field, enter the date from which you want to start syncing data. This is optional, and if you leave it blank, Airbyte will start syncing data from the beginning.
6. Click on "Test Connection" to make sure that your credentials are correct and that Airbyte can connect to your PyPI account.
7. If the test is successful, click on "Create Source" to save your PyPI source configuration.
8. You can now create a new destination to sync your PyPI data to, or you can add this source to an existing pipeline.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.