

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by logging into your Recharge account. Navigate to the data export section and select the data you need to export, such as customer data, subscription data, or transaction data. Export the data in a CSV format, as this is commonly supported and easily manageable for manual uploads.
Once you've exported the data, review and clean it as necessary. Ensure that the columns in your CSV files are properly structured and formatted. Make any necessary adjustments to match the schema you plan to use in Snowflake. This may include renaming columns, converting data types, or splitting/merging columns as needed.
If you haven't already, create a Snowflake account. Set up a virtual warehouse, which will provide the compute resources needed for data loading and querying. Ensure that your Snowflake account's security settings are configured to allow data uploads and access from your location.
Log into your Snowflake account and create a new database specifically for the data you're importing from Recharge. Within the database, create a schema to organize your tables. Use the Snowflake web interface or SQL commands to define the database and schema structure.
Using the schema you've set up, define the tables that will store your Recharge data. Use SQL commands to create tables that match the structure of your prepared CSV files. Specify the appropriate data types for each column to ensure data compatibility and optimize performance.
With your tables defined, use the Snowflake web interface or SnowSQL (Snowflake's command-line tool) to load your CSV files into the corresponding tables. Snowflake supports the `COPY INTO` command, which allows you to upload data directly from your local machine. Ensure the files are accessible and specify the correct path and format options in your command.
After loading the data, run queries to verify that the data in Snowflake matches the original data from Recharge. Check for discrepancies in data types, missing values, or any other issues. Perform any necessary data validation or transformation to ensure your data is accurate and ready for analysis.
By following these steps, you can effectively move data from Recharge to Snowflake without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Recharge is an eCommerce platform offering subscription management software for e-commerce businesses. Recharge takes the work out of subscription management, helping businesses launch their subscription business and scaling as it grows. Specializing in four main fields—eCommerce, Payments, Subscriptions, and SaaS (software-as-a-service), Recharge processes billions of dollars annually for almost 30 million consumers.
Recharge's API provides access to various types of data related to subscription management and billing. The following are the categories of data that can be accessed through Recharge's API:
1. Customer data: This includes information about customers such as their name, email address, shipping address, and payment information.
2. Subscription data: This includes details about the subscription plans, billing cycles, and renewal dates.
3. Order data: This includes information about the orders placed by customers, such as the products purchased, order status, and shipping details.
4. Product data: This includes details about the products available for purchase, such as the product name, description, and pricing.
5. Payment data: This includes information about the payments made by customers, such as the payment method used, transaction ID, and payment status.
6. Analytics data: This includes data related to customer behavior, such as churn rate, customer lifetime value, and revenue per customer.
Overall, Recharge's API provides a comprehensive set of data that can be used to manage subscriptions, track customer behavior, and optimize billing processes.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: