How to load data from Redshift to S3 Glue

Learn how to use Airbyte to synchronize your Redshift data into S3 Glue within minutes.

Trusted by data-driven companies

Building your pipeline or Using Airbyte

Airbyte is the only open source solution empowering data teams  to meet all their growing custom business demands in the new AI era.

Building in-house pipelines
Bespoke pipelines are:
  • Inconsistent and inaccurate data
  • Laborious and expensive
  • Brittle and inflexible
Furthermore, you will need to build and maintain Y x Z pipelines with Y sources and Z destinations to cover all your needs.
After Airbyte
Airbyte connections are:
  • Reliable and accurate
  • Extensible and scalable for all your needs
  • Deployed and governed your way
All your pipelines in minutes, however custom they are, thanks to Airbyte’s connector marketplace and AI Connector Builder.

Start syncing with Airbyte in 3 easy steps within 10 minutes

Set up a Redshift connector in Airbyte

Connect to Redshift or one of 400+ pre-built or 10,000+ custom connectors through simple account authentication.

Set up S3 Glue for your extracted Redshift data

Select S3 Glue where you want to import data from your Redshift source to. You can also choose other cloud data warehouses, databases, data lakes, vector databases, or any other supported Airbyte destinations.

Configure the Redshift to S3 Glue in Airbyte

This includes selecting the data you want to extract - streams and columns -, the sync frequency, where in the destination you want that data to be loaded.

Take a virtual tour

Check out our interactive demo and our how-to videos to learn how you can sync data from any source to any destination.

Demo video of Airbyte Cloud

Demo video of AI Connector Builder

Setup Complexities simplified!

You don’t need to put hours into figuring out how to use Airbyte to achieve your Data Engineering goals.

Simple & Easy to use Interface

Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.

Guided Tour: Assisting you in building connections

Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.

Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes

Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.

What sets Airbyte Apart

Modern GenAI Workflows

Streamline AI workflows with Airbyte: load unstructured data into vector stores like Pinecone, Weaviate, and Milvus. Supports RAG transformations with LangChain chunking and embeddings from OpenAI, Cohere, etc., all in one operation.

Move Large Volumes, Fast

Quickly get up and running with a 5-minute setup that enables both incremental and full refreshes for databases of any size, seamlessly scaling to handle large data volumes. Our optimized architecture overcomes performance bottlenecks, ensuring efficient data synchronization even as your datasets grow from gigabytes to petabytes.

An Extensible Open-Source Standard

More than 1,000 developers contribute to Airbyte’s connectors, different interfaces (UI, API, Terraform Provider, Python Library), and integrations with the rest of the stack. Airbyte’s AI Connector Builder lets you edit or add new connectors in minutes.

Full Control & Security

Airbyte secures your data with cloud-hosted, self-hosted or hybrid deployment options. Single Sign-On (SSO) and Role-Based Access Control (RBAC) ensure only authorized users have access with the right permissions. Airbyte acts as a HIPAA conduit and supports compliance with CCPA, GDPR, and SOC2.

Fully Featured & Integrated

Airbyte automates schema evolution for seamless data flow, and utilizes efficient Change Data Capture (CDC) for real-time updates. Select only the columns you need, and leverage our dbt integration for powerful data transformations.

Enterprise Support with SLAs

Airbyte Self-Managed Enterprise comes with dedicated support and guaranteed service level agreements (SLAs), ensuring that your data movement infrastructure remains reliable and performant, and expert assistance is available when needed.

What our users say

Andre Exner
Director of Customer Hub and Common Analytics

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Learn more
Chase Zieman headshot
Chase Zieman
Chief Data Officer

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Learn more
Rupak Patel
Operational Intelligence Manager

"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."

Learn more

How to Sync Redshift to S3 Glue Manually

Create an IAM role that can be assumed by AWS Glue, Redshift, and S3. This role should have the necessary permissions to read from your Redshift cluster and write to your S3 bucket. Attach policies like `AmazonRedshiftReadOnlyAccess`, `AmazonS3FullAccess`, and `AWSGlueServiceRole`.

Ensure that the data you want to export is ready in Amazon Redshift. This might involve cleaning up your dataset, transforming it into the desired format, and possibly creating new tables or views optimized for export.

Create a new S3 bucket or choose an existing one where you want to store the exported data. Ensure the bucket's permissions allow access from the IAM role you set up in Step 1.

In the AWS Glue console, create a new Glue job. Select the IAM role created in Step 1 for the job execution. Choose the option to use a script editor, as you will be writing a custom script to extract data from Redshift and load it into S3.

Use the PySpark or Scala script in your Glue job to connect to Redshift and extract the required data. Use the `jdbc` connection to read from Redshift and the `write` method to output to S3 in the desired format (e.g., CSV, Parquet). An example script snippet might look like this:
```python
# Initialize Glue context
glueContext = GlueContext(SparkContext.getOrCreate())

# Read data from Redshift
redshift_data = glueContext.create_dynamic_frame.from_options(
connection_type="redshift",
connection_options={
"url": "jdbc:redshift://:5439/",
"user": "",
"password": "",
"dbtable": ".

"
}
)

# Write data to S3
glueContext.write_dynamic_frame.from_options(
frame=redshift_data,
connection_type="s3",
connection_options={"path": "s3:///"},
format="parquet" # or "csv", "json" etc.
)
```

Configure your Glue job's properties, such as specifying the number of DPUs (Data Processing Units) and setting up any needed retry policies. Ensure your job is set to run with sufficient resources to handle the data volume.

Execute the Glue job and monitor its progress through the AWS Glue console. Check for any errors or logs if the job fails to ensure successful data transfer. Once the job completes, verify that the data appears in the S3 bucket as expected.

By following these steps, you can efficiently move data from Amazon Redshift to S3 using AWS Glue without relying on third-party connectors or integrations. Adjust the script and configurations as necessary to fit your specific data and infrastructure requirements.

How to Sync Redshift to S3 Glue Manually - Method 2:

FAQs

ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.

A fully managed data warehouse service in the Amazon Web Services (AWS) cloud, Amazon Redshift is designed for storage and analysis of large-scale datasets. Redshift allows businesses to scale from a few hundred gigabytes to more than a petabyte (a million gigabytes), and utilizes ML techniques to analyze queries, offering businesses new insights from their data. Users can query and combine exabytes of data using standard SQL, and easily save their query results to their S3 data lake.

Amazon Redshift provides access to a wide range of data related to the Redshift cluster, including:  

1. Cluster metadata: Information about the cluster, such as its configuration, status, and performance metrics.  

2. Query execution data: Details about queries executed on the cluster, including query text, execution time, and resource usage.  

3. Cluster events: Notifications about events that occur on the cluster, such as node failures or cluster scaling.  

4. Cluster snapshots: Point-in-time backups of the cluster, including metadata and data files.  

5. Cluster security: Information about the cluster's security configuration, including user accounts, permissions, and encryption settings.  

6. Cluster logs: Detailed logs of cluster activity, including system events, query execution, and error messages.  

7. Cluster performance metrics: Metrics related to the cluster's performance, such as CPU usage, disk I/O, and network traffic.  

Overall, Redshift's API provides a comprehensive set of data that can be used to monitor and optimize the performance of Redshift clusters, as well as to troubleshoot issues and manage security.

This can be done by building a data pipeline manually, usually a Python script (you can leverage a tool as Apache Airflow for this). This process can take more than a full week of development. Or it can be done in minutes on Airbyte in three easy steps: 
1. Set up Redshift to S3 Glue as a source connector (using Auth, or usually an API key)
2. Choose a destination (more than 50 available destination databases, data warehouses or lakes) to sync data too and set it up as a destination connector
3. Define which data you want to transfer from Redshift to S3 Glue and how frequently
You can choose to self-host the pipeline using Airbyte Open Source or have it managed for you with Airbyte Cloud. 

ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.

ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.

What should you do next?

Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:

flag icon
Easily address your data movement needs with Airbyte Cloud
Take the first step towards extensible data movement infrastructure that will give a ton of time back to your data team. 
Get started with Airbyte for free
high five icon
Talk to a data infrastructure expert
Get a free consultation with an Airbyte expert to significantly improve your data movement infrastructure. 
Talk to sales
stars sparkling
Improve your data infrastructure knowledge
Subscribe to our monthly newsletter and get the community’s new enlightening content along with Airbyte’s progress in their mission to solve data integration once and for all.
Subscribe to newsletter