

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
First, identify the type of database Rocket.Chat is using (e.g., MongoDB). You will need to access this database directly to extract the data. Use appropriate database client tools or command-line interfaces to connect to the database and authenticate using the necessary credentials.
Once connected to the Rocket.Chat database, extract the data you want to move. This can include user data, messages, channels, etc. Use database queries to export data into a structured format like JSON or CSV. For large datasets, consider exporting in batches to manage memory and performance.
Set up your AWS environment by creating an S3 bucket to serve as the storage location in your data lake. Ensure you have IAM roles and permissions configured to allow access to S3, and set up any necessary security policies to protect your data.
Before uploading the data to AWS, ensure that it is formatted correctly. If necessary, clean and transform the data to match the structure and schema you will use in your data lake. This could involve normalizing JSON structures, cleaning up CSV files, or converting timestamps to a specific format.
Use AWS CLI or SDKs to transfer the prepared data files to your S3 bucket. This step involves uploading your data files directly from your local environment to the AWS S3 bucket. Use commands like `aws s3 cp` or `aws s3 sync` to facilitate the upload process.
Once the data is in S3, organize it into a logical folder structure that reflects how you plan to query and use it in the data lake. For example, you can create folders by date, data type, or other relevant categories to streamline access and analysis.
After organizing the data in S3, use AWS Glue to create a data catalog. This involves defining tables and schemas that reference your S3 data. Once cataloged, utilize AWS Athena to run SQL queries directly on your S3 data, allowing you to analyze and extract insights without needing to move the data elsewhere.
By following these steps, you can efficiently move data from Rocket.Chat to AWS Data Lake using native AWS services and tools, ensuring a seamless integration without relying on third-party connectors.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Rocket.Chat is a customizable open-source communications platform for organizations with high standards of data protection that enables communication through federation, and over 12 million people are using it for team chat, customer service, and secure files. Rocket.Chat is a free and open-source team chat collaboration platform that permits users to communicate securely in real-time across devices on the web. Rocket.Chat is a platform that develops internal and external communication within a controlled and secure environment.
Rocket.chat's API provides access to a wide range of data related to the chat platform. The following are the categories of data that can be accessed through the API:
1. Users: Information about users, including their name, email address, and profile picture.
2. Channels: Details about channels, including their name, description, and members.
3. Messages: Information about messages sent in channels or direct messages, including the text, sender, and timestamp.
4. Integrations: Details about integrations with other services, such as webhooks and bots.
5. Permissions: Information about user permissions, including roles and permissions granted to specific users.
6. Settings: Configuration settings for the Rocket.chat platform, including server settings and user preferences.
7. Analytics: Data related to platform usage, such as the number of active users and the most popular channels.
Overall, the Rocket.chat API provides a comprehensive set of data that can be used to build custom integrations and applications on top of the chat platform.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: