Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by familiarizing yourself with the SonarCloud Web API. Review the documentation to understand the available endpoints, authentication methods, and data types you can retrieve. This is crucial for crafting requests that will extract the desired data from SonarCloud.
Create an authentication mechanism to access SonarCloud. This typically involves generating a token from your SonarCloud account. Use this token to authenticate your HTTP requests to the SonarCloud API, ensuring you have permission to access and retrieve the necessary data.
Design and implement a script or application to make HTTP GET requests to the appropriate SonarCloud API endpoints. Use the authentication token from the previous step to fetch the data of interest, such as code quality metrics or issues. Store this data temporarily in a structured format such as JSON.
Install and configure Apache Kafka on your server or local machine. This involves setting up Kafka brokers, creating a topic for your data, and ensuring the Kafka server is running properly. Verify the setup by using Kafka command-line tools to create and list topics.
Develop a Kafka producer application using a programming language of your choice (e.g., Java, Python). This application will read the data retrieved from SonarCloud and send it as messages to the Kafka topic. Ensure your producer is configured correctly to connect to the Kafka cluster and handle message serialization.
Implement logic in the Kafka producer to transform the structured SonarCloud data (e.g., JSON) into Kafka messages. This may include partitioning the data based on certain fields, converting it into byte arrays, and preparing it for transmission over the network.
Use the Kafka producer application to send the transformed data as messages to the designated Kafka topic. Ensure that the producer handles exceptions and retries sending messages in case of temporary failures. Monitor the Kafka topic to confirm that messages are being received and stored correctly.
By following these steps, you can efficiently move data from SonarCloud to Kafka without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
SonarCloud is a service that can be integrated into Azure DevOps via an extension. SonarCloud is a cloud-based solution to analyze code and that have also remaining code quality and security service to catch Security Vulnerabilities, Bugs, and Code. SonarCloud is an application that you can use to build robust and safe applications. One can use SonarCloud as a static analysis tool to analyze the code in the source graph repository for security vulnerabilities.
SonarCloud's API provides access to a wide range of data related to software development and code quality. The following are the categories of data that can be accessed through the API:
1. Code Quality Metrics: SonarCloud's API provides access to various code quality metrics such as code coverage, code duplication, code complexity, and code smells.
2. Security Vulnerabilities: The API provides information on security vulnerabilities in the code, including details on the type of vulnerability, its severity, and recommendations for remediation.
3. Technical Debt: The API provides information on technical debt in the code, including the estimated time required to fix the debt and the cost of fixing it.
4. Code Issues: The API provides information on code issues such as bugs, vulnerabilities, and code smells, along with details on their severity and recommendations for remediation.
5. Project and Repository Information: The API provides information on the project and repository, including details on the codebase, the number of lines of code, and the number of contributors.
6. Continuous Integration and Deployment: The API provides information on the status of continuous integration and deployment pipelines, including build and deployment success rates, and the time taken for each step.
Overall, SonarCloud's API provides developers with a comprehensive set of data to help them improve the quality of their code and streamline their development processes.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





