Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Before beginning the data transfer process, ensure you have access to both Teradata and Convex environments. Verify that you have the necessary permissions to export data from Teradata and import data into Convex. Ensure that both environments are up and running and that you have access to the required tools and interfaces for each.
Use Teradata's SQL assistant or BTEQ (Basic Teradata Query) tool to run an SQL query to extract the desired data. You can use a `SELECT` statement to fetch data from the relevant tables. Export this data into a CSV or a flat file format using Teradata's export functionalities. Make sure to define the appropriate delimiters and handle any special characters.
Once the data is extracted, clean and format the data as required. This may involve removing duplicates, handling null values, or converting data types to match Convex's data model requirements. Use scripting languages like Python or shell scripts to automate this process if necessary.
Convert the cleaned data into a format that Convex can easily ingest. Ensure that the data schema aligns with Convex's expected input format. This may involve restructuring the CSV or flat files to match the field names and types in Convex.
Use Convex's native interface or command-line tools to establish a secure connection. Ensure that you have the necessary credentials and permissions to upload data. If Convex supports secure protocols like HTTPS or SSH, make sure to utilize them for an encrypted connection.
Using Convex's data import functionalities, initiate the data import process. Upload the prepared CSV or flat file to Convex. Follow the import instructions provided by Convex to ensure that the data is ingested correctly. Monitor the import process for any errors or warnings and address them promptly.
After the import process is complete, perform a thorough verification to ensure that all data has been transferred accurately. Compare sample data entries from Teradata with those in Convex to check for consistency. Run queries in Convex to validate that the data is correctly structured and accessible for intended use cases.
By following these steps, you can move data from Teradata to Convex effectively without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Teradata is a data management and analytics platform that helps businesses to collect, store, and analyze large amounts of data. It provides a range of tools and services that enable organizations to make data-driven decisions and gain insights into their operations. Teradata's platform is designed to handle complex data sets and support advanced analytics, including machine learning and artificial intelligence. It also offers cloud-based solutions that allow businesses to scale their data management and analytics capabilities as needed. Overall, Teradata helps businesses to unlock the value of their data and drive better outcomes across their operations.
Teradata's API provides access to a wide range of data types, including:
1. Structured data: This includes data that is organized into tables with defined columns and rows, such as customer information, sales data, and financial records.
2. Unstructured data: This includes data that is not organized in a predefined manner, such as social media posts, emails, and documents.
3. Semi-structured data: This includes data that has some structure, but not as much as structured data. Examples include XML files and JSON data.
4. Time-series data: This includes data that is organized by time, such as stock prices, weather data, and sensor readings.
5. Geospatial data: This includes data that is related to geographic locations, such as maps, GPS coordinates, and location-based services.
6. Machine-generated data: This includes data that is generated by machines, such as log files, sensor data, and telemetry data.
Overall, Teradata's API provides access to a wide range of data types, allowing developers and data analysts to work with diverse data sets and extract insights from them.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





