Teradata is a scalable data warehousing platform that supports large-scale data analytics, enabling efficient data storage, retrieval, and complex query processing for business insights.
Top companies trust Airbyte to centralize their Data
This includes selecting the data you want to extract - streams and columns -, the sync frequency, where in the destination you want that data to be loaded.
This includes selecting the data you want to extract - streams and columns -, the sync frequency, where in the destination you want that data to be loaded.
Set up a source connector to extract data from in Airbyte
Choose from one of 400 sources where you want to import data from. This can be any API tool, cloud data warehouse, database, data lake, files, among other source types. You can even build your own source connector in minutes with our no-code no-code connector builder.
Configure the connection in Airbyte
The Airbyte Open Data Movement Platform
The only open solution empowering data teams to meet growing business demands in the new AI era.
Leverage the largest catalog of connectors
Cover your custom needs with our extensibility
Free your time from maintaining connectors, with automation
- Automated schema change handling, data normalization and more
- Automated data transformation orchestration with our dbt integration
- Automated workflow with our Airflow, Dagster and Prefect integration
Reliability at every level
Ship more quickly with the only solution that fits ALL your needs.
As your tools and edge cases grow, you deserve an extensible and open ELT solution that eliminates the time you spend on building and maintaining data pipelines
Leverage the largest catalog of connectors
Cover your custom needs with our extensibility
Free your time from maintaining connectors, with automation
- Automated schema change handling, data normalization and more
- Automated data transformation orchestration with our dbt integration
- Automated workflow with our Airflow, Dagster and Prefect integration
Reliability at every level
Ship more quickly with the only solution that fits ALL your needs.
As your tools and edge cases grow, you deserve an extensible and open ELT solution that eliminates the time you spend on building and maintaining data pipelines
Leverage the largest catalog of connectors
Cover your custom needs with our extensibility
Free your time from maintaining connectors, with automation
- Automated schema change handling, data normalization and more
- Automated data transformation orchestration with our dbt integration
- Automated workflow with our Airflow, Dagster and Prefect integration
Reliability at every level
Move large volumes, fast.
Change Data Capture.
Security from source to destination.
We support the CDC methods your company needs
Log-based CDC
Timestamp-based CDC
Airbyte Open Source
Airbyte Cloud
Airbyte Enterprise
Why choose Airbyte as the backbone of your data infrastructure?
Keep your data engineering costs in check
Get Airbyte hosted where you need it to be
- Airbyte Cloud: Have it hosted by us, with all the security you need (SOC2, ISO, GDPR, HIPAA Conduit).
- Airbyte Enterprise: Have it hosted within your own infrastructure, so your data and secrets never leave it.
White-glove enterprise-level support
Including for your Airbyte Open Source instance with our premium support.
Airbyte supports a growing list of destinations, including cloud data warehouses, lakes, and databases.
Airbyte supports a growing list of destinations, including cloud data warehouses, lakes, and databases.
Airbyte supports a growing list of sources, including API tools, cloud data warehouses, lakes, databases, and files, or even custom sources you can build.
Fnatic, based out of London, is the world's leading esports organization, with a winning legacy of 16 years and counting in over 28 different titles, generating over 13m USD in prize money. Fnatic has an engaged follower base of 14m across their social media platforms and hundreds of millions of people watch their teams compete in League of Legends, CS:GO, Dota 2, Rainbow Six Siege, and many more titles every year.
Ready to get started?
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Teradata is a data management and analytics platform that helps businesses to collect, store, and analyze large amounts of data. It provides a range of tools and services that enable organizations to make data-driven decisions and gain insights into their operations. Teradata's platform is designed to handle complex data sets and support advanced analytics, including machine learning and artificial intelligence. It also offers cloud-based solutions that allow businesses to scale their data management and analytics capabilities as needed. Overall, Teradata helps businesses to unlock the value of their data and drive better outcomes across their operations.
Teradata's API provides access to a wide range of data types, including:
1. Structured data: This includes data that is organized into tables with defined columns and rows, such as customer information, sales data, and financial records.
2. Unstructured data: This includes data that is not organized in a predefined manner, such as social media posts, emails, and documents.
3. Semi-structured data: This includes data that has some structure, but not as much as structured data. Examples include XML files and JSON data.
4. Time-series data: This includes data that is organized by time, such as stock prices, weather data, and sensor readings.
5. Geospatial data: This includes data that is related to geographic locations, such as maps, GPS coordinates, and location-based services.
6. Machine-generated data: This includes data that is generated by machines, such as log files, sensor data, and telemetry data.
Overall, Teradata's API provides access to a wide range of data types, allowing developers and data analysts to work with diverse data sets and extract insights from them.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Teradata is a data management and analytics platform that helps businesses to collect, store, and analyze large amounts of data. It provides a range of tools and services that enable organizations to make data-driven decisions and gain insights into their operations. Teradata's platform is designed to handle complex data sets and support advanced analytics, including machine learning and artificial intelligence. It also offers cloud-based solutions that allow businesses to scale their data management and analytics capabilities as needed. Overall, Teradata helps businesses to unlock the value of their data and drive better outcomes across their operations.
Teradata's API provides access to a wide range of data types, including:
1. Structured data: This includes data that is organized into tables with defined columns and rows, such as customer information, sales data, and financial records.
2. Unstructured data: This includes data that is not organized in a predefined manner, such as social media posts, emails, and documents.
3. Semi-structured data: This includes data that has some structure, but not as much as structured data. Examples include XML files and JSON data.
4. Time-series data: This includes data that is organized by time, such as stock prices, weather data, and sensor readings.
5. Geospatial data: This includes data that is related to geographic locations, such as maps, GPS coordinates, and location-based services.
6. Machine-generated data: This includes data that is generated by machines, such as log files, sensor data, and telemetry data.
Overall, Teradata's API provides access to a wide range of data types, allowing developers and data analysts to work with diverse data sets and extract insights from them.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Teradata is a data management and analytics platform that helps businesses to collect, store, and analyze large amounts of data. It provides a range of tools and services that enable organizations to make data-driven decisions and gain insights into their operations. Teradata's platform is designed to handle complex data sets and support advanced analytics, including machine learning and artificial intelligence. It also offers cloud-based solutions that allow businesses to scale their data management and analytics capabilities as needed. Overall, Teradata helps businesses to unlock the value of their data and drive better outcomes across their operations.
Teradata's API provides access to a wide range of data types, including:
1. Structured data: This includes data that is organized into tables with defined columns and rows, such as customer information, sales data, and financial records.
2. Unstructured data: This includes data that is not organized in a predefined manner, such as social media posts, emails, and documents.
3. Semi-structured data: This includes data that has some structure, but not as much as structured data. Examples include XML files and JSON data.
4. Time-series data: This includes data that is organized by time, such as stock prices, weather data, and sensor readings.
5. Geospatial data: This includes data that is related to geographic locations, such as maps, GPS coordinates, and location-based services.
6. Machine-generated data: This includes data that is generated by machines, such as log files, sensor data, and telemetry data.
Overall, Teradata's API provides access to a wide range of data types, allowing developers and data analysts to work with diverse data sets and extract insights from them.
1. First, navigate to the Airbyte website and create an account.
2. Once you have logged in, click on the ""Sources"" tab on the left-hand side of the screen.
3. Scroll down until you find the Teradata source connector and click on it.
4. You will be prompted to enter your Teradata database credentials, including the host, port, username, and password.
5. After entering your credentials, click on the ""Test"" button to ensure that the connection is successful.
6. If the test is successful, click on the ""Save"" button to save your Teradata source connector settings.
7. You can now use the Teradata source connector to extract data from your Teradata database and load it into your destination of choice.
8. To set up a destination connector, navigate to the ""Destinations"" tab on the left-hand side of the screen and select the destination you want to use.
9. Follow the prompts to enter your destination credentials and configure your destination settings.
10. Once you have set up both your source and destination connectors, you can create a new pipeline to move data from your Teradata database to your destination.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.