

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say


"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."


“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Before starting the data transfer process, ensure that both the Teradata and MS SQL Server environments are set up and accessible. This involves having the necessary login credentials, permissions, and network connectivity to access both databases.
Use the Teradata BTEQ (Basic Teradata Query) tool to export the necessary data. BTEQ is a command-line utility that allows you to execute SQL queries and export data in a format suitable for transferring to other systems. Use the following command to export data to a CSV file:
```
.EXPORT FILE=
SELECT FROM ;
.EXPORT RESET
```
Ensure the export file is saved in a location accessible for the next step.
Depending on the data structure and compatibility between Teradata and MS SQL Server, you might need to transform the data. Use scripting languages like Python or shell scripts to process the CSV file, handling any necessary data type conversions or adjustments.
On the MS SQL Server side, ensure that the target database and tables exist to import the data. Use SQL Server Management Studio (SSMS) to create tables that match the structure of the data exported from Teradata. This step involves defining the schema, data types, and any constraints that may be required.
Use the BULK INSERT command in MS SQL Server to import the CSV file into the target table. Ensure that the file location is accessible to the SQL Server instance. Here’s a sample command:
```sql
BULK INSERT
FROM ''
WITH (
FIELDTERMINATOR = ',',
ROWTERMINATOR = '\n',
FIRSTROW = 2 -- Skip header if present
);
```
Adjust the FIELDTERMINATOR and ROWTERMINATOR as necessary to match your CSV format.
After importing the data, perform checks to ensure that the data has been transferred accurately. This can be done by executing queries on both the Teradata source and the MS SQL Server target and comparing the row counts and key data points.
Once the data is successfully imported and validated, optimize the MS SQL Server tables for performance. This step typically involves creating necessary indexes, updating statistics, and performing any additional maintenance tasks like defragmentation to ensure efficient query performance on the newly imported data.
By following these steps, you can effectively move data from Teradata to MS SQL Server without relying on third-party connectors, ensuring a seamless and efficient data transfer process.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Teradata is a data management and analytics platform that helps businesses to collect, store, and analyze large amounts of data. It provides a range of tools and services that enable organizations to make data-driven decisions and gain insights into their operations. Teradata's platform is designed to handle complex data sets and support advanced analytics, including machine learning and artificial intelligence. It also offers cloud-based solutions that allow businesses to scale their data management and analytics capabilities as needed. Overall, Teradata helps businesses to unlock the value of their data and drive better outcomes across their operations.
Teradata's API provides access to a wide range of data types, including:
1. Structured data: This includes data that is organized into tables with defined columns and rows, such as customer information, sales data, and financial records.
2. Unstructured data: This includes data that is not organized in a predefined manner, such as social media posts, emails, and documents.
3. Semi-structured data: This includes data that has some structure, but not as much as structured data. Examples include XML files and JSON data.
4. Time-series data: This includes data that is organized by time, such as stock prices, weather data, and sensor readings.
5. Geospatial data: This includes data that is related to geographic locations, such as maps, GPS coordinates, and location-based services.
6. Machine-generated data: This includes data that is generated by machines, such as log files, sensor data, and telemetry data.
Overall, Teradata's API provides access to a wide range of data types, allowing developers and data analysts to work with diverse data sets and extract insights from them.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: