Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by navigating to your Zendesk Support admin settings and create a new API token. This token will be used for authentication to access Zendesk data. Ensure you have permissions to access the data you intend to move and note down the API token securely as it will be needed in subsequent steps.
Clearly outline the specific data you need to transfer from Zendesk. This could include tickets, users, or other resource types. Knowing exactly what data you need will help in constructing precise API requests and optimizing the data extraction process.
Write a script in a language like Python, Node.js, or any language you are comfortable with that supports HTTP requests. Use this script to authenticate with Zendesk using the API token and make requests to the Zendesk API endpoints to fetch the required data. Ensure the script handles pagination if you are dealing with large datasets.
Once the data is extracted, process or transform it into a suitable format for RabbitMQ. This typically involves converting the data into JSON or XML format. Ensure that the data transformation script handles any necessary data structure adjustments to match RabbitMQ message requirements.
Set up a RabbitMQ server if you haven’t already. This involves installing RabbitMQ on a server or local environment and configuring it for use. Ensure that your RabbitMQ instance is secured and properly configured to handle incoming messages, including setting up necessary queues and exchanges.
Write another script to connect to RabbitMQ using a library like Pika for Python. This script should read the transformed data and publish it to the appropriate RabbitMQ queue. Make sure to handle any errors gracefully and implement retries or logging mechanisms as needed to ensure reliable data transfer.
Use a task scheduler like cron (on Unix-based systems) or Task Scheduler (on Windows) to automate the execution of your scripts at desired intervals. This ensures that data is regularly extracted from Zendesk and inserted into RabbitMQ without manual intervention. Monitor the process to ensure data integrity and address any issues promptly.
By following these steps, you can efficiently move data from Zendesk Support to RabbitMQ without relying on third-party connectors, ensuring a custom and controlled data transfer process.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Zendesk Support is a software designed to help businesses manage customer interactions. It provides businesses with the means to personalize support across any channel with the ability to prioritize, track and solve customer issues. Also built for iOS, Zendesk Support can be accessed on iPhone and iPad, adding a new dimension to the ability to add the necessary people to a customer conversation at any time.
Zendesk Support's API provides access to a wide range of data related to customer support and service management. The following are the categories of data that can be accessed through the API:
1. Tickets: Information related to customer inquiries, including ticket ID, subject, description, status, priority, and tags.
2. Users: Data related to customer profiles, including name, email, phone number, and organization.
3. Organizations: Information about customer organizations, including name, domain, and tags.
4. Groups: Data related to support groups, including name, description, and membership.
5. Views: Information about support views, including name, description, and filters.
6. Macros: Data related to macros, including name, description, and actions.
7. Triggers: Information about triggers, including name, description, and conditions.
8. Custom Fields: Data related to custom fields, including name, type, and options.
9. Attachments: Information about attachments, including file name, size, and content.
10. Comments: Data related to ticket comments, including author, body, and timestamp. Overall, Zendesk Support's API provides access to a comprehensive set of data that can be used to manage and optimize customer support and service operations.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





