Top companies trust Airbyte to centralize their Data
This includes selecting the data you want to extract - streams and columns -, the sync frequency, where in the destination you want that data to be loaded.
This includes selecting the data you want to extract - streams and columns -, the sync frequency, where in the destination you want that data to be loaded.
Set up a source connector to extract data from in Airbyte
Choose from one of 300+ sources where you want to import data from. This can be any API tool, cloud data warehouse, database, data lake, files, among other source types. You can even build your own source connector in minutes with our no-code connector builder.
Configure the connection in Airbyte
Ship more quickly with the only solution that fits ALL your needs.
As your tools and edge cases grow, you deserve an extensible and open ELT solution that eliminates the time you spend on building and maintaining data pipelines
Leverage the largest catalog of connectors
Cover your custom needs with our extensibility
Free your time from maintaining connectors, with automation
- Automated schema change handling, data normalization and more
- Automated data transformation orchestration with our dbt integration
- Automated workflow with our Airflow, Dagster and Prefect integration
Reliability at every level
Ship more quickly with the only solution that fits ALL your needs.
As your tools and edge cases grow, you deserve an extensible and open ELT solution that eliminates the time you spend on building and maintaining data pipelines
Leverage the largest catalog of connectors
Cover your custom needs with our extensibility
Free your time from maintaining connectors, with automation
- Automated schema change handling, data normalization and more
- Automated data transformation orchestration with our dbt integration
- Automated workflow with our Airflow, Dagster and Prefect integration
Reliability at every level
Ship more quickly with the only solution that fits ALL your needs.
As your tools and edge cases grow, you deserve an extensible and open ELT solution that eliminates the time you spend on building and maintaining data pipelines
Leverage the largest catalog of connectors
Cover your custom needs with our extensibility
Free your time from maintaining connectors, with automation
- Automated schema change handling, data normalization and more
- Automated data transformation orchestration with our dbt integration
- Automated workflow with our Airflow, Dagster and Prefect integration
Reliability at every level
Move large volumes, fast.
Change Data Capture.
Security from source to destination.
We support the CDC methods your company needs
Log-based CDC
Timestamp-based CDC
Airbyte Open Source
Airbyte Cloud
Airbyte Enterprise
Why choose Airbyte as the backbone of your data infrastructure?
Keep your data engineering costs in check
Get Airbyte hosted where you need it to be
- Airbyte Cloud: Have it hosted by us, with all the security you need (SOC2, ISO, GDPR, HIPAA Conduit).
- Airbyte Enterprise: Have it hosted within your own infrastructure, so your data and secrets never leave it.
White-glove enterprise-level support
Including for your Airbyte Open Source instance with our premium support.
Airbyte supports a growing list of destinations, including cloud data warehouses, lakes, and databases.
Airbyte supports a growing list of destinations, including cloud data warehouses, lakes, and databases.
Airbyte supports a growing list of sources, including API tools, cloud data warehouses, lakes, databases, and files, or even custom sources you can build.
Fnatic, based out of London, is the world's leading esports organization, with a winning legacy of 16 years and counting in over 28 different titles, generating over 13m USD in prize money. Fnatic has an engaged follower base of 14m across their social media platforms and hundreds of millions of people watch their teams compete in League of Legends, CS:GO, Dota 2, Rainbow Six Siege, and many more titles every year.
Ready to get started?
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Zendesk Support is a software designed to help businesses manage customer interactions. It provides businesses with the means to personalize support across any channel with the ability to prioritize, track and solve customer issues. Also built for iOS, Zendesk Support can be accessed on iPhone and iPad, adding a new dimension to the ability to add the necessary people to a customer conversation at any time.
Zendesk Support's API provides access to a wide range of data related to customer support and service management. The following are the categories of data that can be accessed through the API:
1. Tickets: Information related to customer inquiries, including ticket ID, subject, description, status, priority, and tags.
2. Users: Data related to customer profiles, including name, email, phone number, and organization.
3. Organizations: Information about customer organizations, including name, domain, and tags.
4. Groups: Data related to support groups, including name, description, and membership.
5. Views: Information about support views, including name, description, and filters.
6. Macros: Data related to macros, including name, description, and actions.
7. Triggers: Information about triggers, including name, description, and conditions.
8. Custom Fields: Data related to custom fields, including name, type, and options.
9. Attachments: Information about attachments, including file name, size, and content.
10. Comments: Data related to ticket comments, including author, body, and timestamp. Overall, Zendesk Support's API provides access to a comprehensive set of data that can be used to manage and optimize customer support and service operations.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Zendesk Support is a software designed to help businesses manage customer interactions. It provides businesses with the means to personalize support across any channel with the ability to prioritize, track and solve customer issues. Also built for iOS, Zendesk Support can be accessed on iPhone and iPad, adding a new dimension to the ability to add the necessary people to a customer conversation at any time.
Zendesk Support's API provides access to a wide range of data related to customer support and service management. The following are the categories of data that can be accessed through the API:
1. Tickets: Information related to customer inquiries, including ticket ID, subject, description, status, priority, and tags.
2. Users: Data related to customer profiles, including name, email, phone number, and organization.
3. Organizations: Information about customer organizations, including name, domain, and tags.
4. Groups: Data related to support groups, including name, description, and membership.
5. Views: Information about support views, including name, description, and filters.
6. Macros: Data related to macros, including name, description, and actions.
7. Triggers: Information about triggers, including name, description, and conditions.
8. Custom Fields: Data related to custom fields, including name, type, and options.
9. Attachments: Information about attachments, including file name, size, and content.
10. Comments: Data related to ticket comments, including author, body, and timestamp. Overall, Zendesk Support's API provides access to a comprehensive set of data that can be used to manage and optimize customer support and service operations.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Zendesk Support is a software designed to help businesses manage customer interactions. It provides businesses with the means to personalize support across any channel with the ability to prioritize, track and solve customer issues. Also built for iOS, Zendesk Support can be accessed on iPhone and iPad, adding a new dimension to the ability to add the necessary people to a customer conversation at any time.
Zendesk Support's API provides access to a wide range of data related to customer support and service management. The following are the categories of data that can be accessed through the API:
1. Tickets: Information related to customer inquiries, including ticket ID, subject, description, status, priority, and tags.
2. Users: Data related to customer profiles, including name, email, phone number, and organization.
3. Organizations: Information about customer organizations, including name, domain, and tags.
4. Groups: Data related to support groups, including name, description, and membership.
5. Views: Information about support views, including name, description, and filters.
6. Macros: Data related to macros, including name, description, and actions.
7. Triggers: Information about triggers, including name, description, and conditions.
8. Custom Fields: Data related to custom fields, including name, type, and options.
9. Attachments: Information about attachments, including file name, size, and content.
10. Comments: Data related to ticket comments, including author, body, and timestamp. Overall, Zendesk Support's API provides access to a comprehensive set of data that can be used to manage and optimize customer support and service operations.
1. First, you need to obtain your Zendesk Support API credentials. To do this, log in to your Zendesk Support account and navigate to the Admin settings. From there, select the API option and click on the "Add API Token" button. Follow the prompts to create a new API token and copy the token to your clipboard.
2. Next, open the Airbyte platform and navigate to the "Sources" tab. From there, select the Zendesk Support source connector and click on the "Create New Connection" button.
3. In the connection settings, enter a name for your connection and paste the API token you copied earlier into the "API Token" field.
4. In the "Subdomain" field, enter the subdomain of your Zendesk Support account (e.g. if your Zendesk Support URL is "https://example.zendesk.com/", your subdomain would be "example").
5. In the "Username" and "Password" fields, enter the email address and password associated with your Zendesk Support account.
6. Click on the "Test" button to ensure that your credentials are valid and that Airbyte can connect to your Zendesk Support account.
7. Once the test is successful, click on the "Save & Continue" button to proceed to the next step.
8. In the next screen, you can select the specific data you want to replicate from your Zendesk Support account. You can choose to replicate tickets, users, organizations, and more.
9. Once you have selected the data you want to replicate, click on the "Save & Test" button to ensure that your configuration is correct.
10. If the test is successful, click on the "Create Connection" button to finalize your Zendesk Support source connector configuration. Your data will now be replicated from Zendesk Support to your destination of choice.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.