TL;DR
The most prominent ETL and ELT tools to transfer data from Oracle DB include:
These ETL and ELT tools help in extracting data from Oracle DB and other sources (APIs, databases, and more), transforming it efficiently, and loading it into a database, data warehouse or data lake, enhancing data management capabilities. Airbyte distinguishes itself by offering both a self-hosted open-source platform and a Cloud one.
About Oracle Database
Oracle Database is a multi-model database management system that uses a storage architecture known as System Global Area (SGA) and Process Global Area (PGA). The architecture splits data storage into tablespaces containing segments (tables, indexes) which are further divided into extents and blocks.
What is ETL?
ETL (Extract, Transform, Load) is a process used to extract data from one or more data sources, transform the data to fit a desired format or structure, and then load the transformed data into a target database or data warehouse. ETL is typically used for batch processing and is most commonly associated with traditional data warehouses.
What is ELT?
More recently, ETL has been replaced by ELT (Extract, Load, Transform). ELT Tool is a variation of ETL one that automatically pulls data from even more heterogeneous data sources, loads that data into the target data repository - databases, data warehouses or data lakes - and then performs data transformations at the destination level. ELT provides significant benefits over ETL, such as:
- Faster processing times and loading speed
- Better scalability at a lower cost
- Support of more data sources (including Cloud apps), and of unstructured data
- Ability to have no-code data pipelines
- More flexibility and autonomy for data analysts with lower maintenance
- Better data integrity and reliability, easier identification of data inconsistencies
- Support of many more automations, including automatic schema change migration
For simplicity, we will only use Oracle DB ETL as a reference to all data integration tools, ETL and ELT included, to integrate data from .
How data integration from Oracle DB to a data warehouse can help
Companies might do Oracle DB ETL for several reasons:
- Business intelligence: Oracle DB data may need to be loaded into a data warehouse for analysis, reporting, and business intelligence purposes.
- Data Consolidation: Companies may need to consolidate data with other systems or applications to gain a more comprehensive view of their business operations
- Compliance: Certain industries may have specific data retention or compliance requirements, which may necessitate extracting data for archiving purposes.
Overall, ETL from Oracle DB allows companies to leverage the data for a wide range of business purposes, from integration and analytics to compliance and performance optimization.
Criterias to select the right Oracle DB ETL solution for you
As a company, you don't want to use one separate data integration tool for every data source you want to pull data from. So you need to have a clear integration strategy and some well-defined evaluation criteria to choose your Oracle DB ETL solution.
Here is our recommendation for the criteria to consider:
- Connector need coverage: does the ETL tool extract data from all the multiple systems you need, should it be any cloud app or Rest API, relational databases or noSQL databases, csv files, etc.? Does it support the destinations you need to export data to - data warehouses, databases, or data lakes?
- Connector extensibility: for all those connectors, are you able to edit them easily in order to add a potentially missing endpoint, or to fix an issue on it if needed?
- Ability to build new connectors: all data integration solutions support a limited number of data sources.
- Support of change data capture: this is especially important for your databases.
- Data integration features and automations: including schema change migration, re-syncing of historical data when needed, scheduling feature
- Efficiency: how easy is the user interface (including graphical interface, API, and CLI if you need them)?
- Integration with the stack: do they integrate well with the other tools you might need - dbt, Airflow, Dagster, Prefect, etc. - ?
- Data transformation: Do they enable to easily transform data, and even support complex data transformations? Possibly through an square integration with dbt
- Level of support and high availability: how responsive and helpful the support is, what are the average % successful syncs for the connectors you need. The whole point of using ETL solutions is to give back time to your data team.
- Data reliability and scalability: do they have recognizable brands using them? It also shows how scalable and reliable they might be for high-volume data replication.
- Security and trust: there is nothing worse than a data leak for your company, the fine can be astronomical, but the trust broken with your customers can even have more impact. So checking the level of certification (SOC2, ISO) of the tools is paramount. You might want to expand to Europe, so you would need them to be GDPR-compliant too.
Overview of Native Oracle ETL Tools
Oracle Data Integrator
A comprehensive data integration platform built on ELT architecture instead of traditional ETL. ODI leverages the database engine to perform transformations, eliminating the need for a separate transformation server. It supports Oracle changed data capture (CDC) and offers Knowledge Modules for different integration patterns.
Oracle GoldenGate
A real-time data replication and CDC tool that captures changes from Oracle Database transaction logs. It uses a microservices architecture with separate processes for extract (capture), route (distribution), and replicate (delivery) operations, enabling minimal impact on source systems.
OCI Streaming
A managed, Kafka-compatible streaming service that provides partitioned, append-only logs for real-time data movement. It offers built-in encryption, fault tolerance across availability domains, and integration with OCI Functions for stream processing.
Top 10 Oracle DB ETL tools
Here are the top Oracle DB ETL tools based on their popularity and the criteria listed above:
1. Airbyte
Airbyte is the leading open-source ELT platform, created in July 2020. Airbyte offers the largest catalog of data connectors—350 and growing—and has 40,000 data engineers using it to transfer data, syncing several PBs per month, as of June 2023. Major users include brands such as Siemens, Calendly, Angellist, and more. Airbyte integrates with dbt for its data transformation, and Airflow/Prefect/Dagster for orchestration. It is also known for its easy-to-use user interface, and has an API and Terraform Provider available.
What's unique about Airbyte?
Their ambition is to commoditize data integration by addressing the long tail of connectors through their growing contributor community. All Airbyte connectors are open-source which makes them very easy to edit. Airbyte also provides a Connector Development Kit to build new connectors from scratch in less than 30 minutes, and a no-code connector builder UI that lets you build one in less than 10 minutes without help from any technical person or any local development environment required..
Airbyte also provides stream-level control and visibility. If a sync fails because of a stream, you can relaunch that stream only. This gives you great visibility and control over your data.
Data professionals can either deploy and self-host Airbyte Open Source, or leverage the cloud-hosted solution Airbyte Cloud where the new pricing model distinguishes databases from APIs and files. Airbyte offers a 99% SLA on Generally Available data pipelines tools, and a 99.9% SLA on the platform.
2. Fivetran
Fivetran is a closed-source, managed ELT service that was created in 2012. Fivetran has about 300 data connectors and over 5,000 customers.
Fivetran offers some ability to edit current connectors and create new ones with Fivetran Functions, but doesn't offer as much flexibility as an open-source tool would.
What's unique about Fivetran?
Being the first ELT solution in the market, they are considered a proven and reliable choice. However, Fivetran charges on monthly active rows (in other words, the number of rows that have been edited or added in a given month), and are often considered very expensive.
Here are more critical insights on the key differentiations between Airbyte and Fivetran
3. Stitch Data
Stitch is a cloud-based platform for ETL that was initially built on top of the open-source ETL tool Singer.io. More than 3,000 companies use it.
Stitch was acquired by Talend, which was acquired by the private equity firm Thoma Bravo, and then by Qlik. These successive acquisitions decreased market interest in the Singer.io open-source community, making most of their open-source data connectors obsolete. Only their top 30 connectors continue to be maintained by the open-source community.
What's unique about Stitch?
Given the lack of quality and reliability in their connectors, and poor support, Stitch has adopted a low-cost approach.
Here are more insights on the differentiations between Airbyte and Stitch, and between Fivetran and Stitch.
4. Matillion
Matillion is a self-hosted ELT solution, created in 2011. It supports about 100 connectors and provides all extract, load and transform features. Matillion is used by 500+ companies across 40 countries.
What's unique about Matillion?
Being self-hosted means that Matillion ensures your data doesn’t leave your infrastructure and stays on premise. However, you might have to pay for several Matillion instances if you’re multi-cloud. Also, Matillion has verticalized its offer from offering all ELT and more. So Matillion doesn't integrate with other tools such as dbt, Airflow, and more.
Here are more insights on the differentiations between Airbyte and Matillion.
5. Airflow
Apache Airflow is an open-source workflow management tool. Airflow is not an ETL solution but you can use Airflow operators for data integration jobs. Airflow started in 2014 at Airbnb as a solution to manage the company's workflows. Airflow allows you to author, schedule and monitor workflows as DAG (directed acyclic graphs) written in Python.
What's unique about Airflow?
Airflow requires you to build data pipelines on top of its orchestration tool. You can leverage Airbyte for the data pipelines and orchestrate them with Airflow, significantly lowering the burden on your data engineering team.
Here are more insights on the differentiations between Airbyte and Airflow.
6. Informatica PowerCenter
Informatica PowerCenter is an ETL tool that supported data profiling, in addition to data cleansing and data transformation processes. It was also implemented in their customers' infrastructure, and is also an Enterprise product, so hard to implement without any self-serve option.
7. Microsoft SQL Server Integration Services (SSIS)
MS SQL Server Integration Services is the Microsoft alternative from within their Microsoft infrastructure. It offers ETL, and not ELT and its benefits.
8. Singer
Singer is also worth mentioning as the first open-source JSON-based ETL framework. It was introduced in 2017 by Stitch (which was acquired by Talend in 2018) as a way to offer extendibility to the connectors they had pre-built. Talend has unfortunately stopped investing in Singer’s community and providing maintenance for the Singer’s taps and targets, which are increasingly outdated, as mentioned above.
9. Rivery
Rivery is another cloud-based ELT solution. Founded in 2018, it presents a verticalized solution by providing built-in data transformation, orchestration and activation capabilities. Rivery offers 150+ connectors, so a lot less than Airbyte. Its pricing approach is usage-based with Rivery pricing unit that are a proxy for platform usage. The pricing unit depends on the connectors you sync from, which makes it hard to estimate.
10. Meltano
Meltano is an open-source orchestrator dedicated to data integration, spined off from Gitlab on top of Singer’s taps and targets. Since 2019, they have been iterating on several approaches. Meltano distinguishes itself with its focus on DataOps and the CLI interface. They offer a SDK to build connectors, but it requires engineering skills and more time to build than Airbyte’s CDK. Meltano doesn’t invest in maintaining the connectors and leave it to the Singer community, and thus doesn’t provide support package with any SLA.
All those ETL tools are not specific to Oracle DB, you might also find some other specific data loader for Oracle DB data. But you will most likely not want to be loading data from only Oracle DB in your data stores.
Which data can you extract from Oracle DB?
Oracle DB provides access to a wide range of data types, including:
• Relational data: This includes tables, views, and indexes that are used to store and organize data in a structured manner.
• Spatial data: This includes data that is related to geographic locations, such as maps, satellite imagery, and GPS coordinates.
• Time-series data: This includes data that is related to time, such as stock prices, weather data, and sensor readings.
• Multimedia data: This includes data that is related to images, videos, and audio files.
• XML data: This includes data that is stored in XML format, such as web pages, documents, and other structured data.
• JSON data: This includes data that is stored in JSON format, such as web APIs, mobile apps, and other data sources.
• Graph data: This includes data that is related to relationships between entities, such as social networks, supply chains, and other complex systems.
Overall, Oracle DB's API provides access to a wide range of data types that can be used for a variety of applications, from business intelligence and analytics to machine learning and artificial intelligence.
How to start pulling data in minutes from Oracle DB
If you decide to test Airbyte, you can start analyzing your Oracle DB data within minutes in three easy steps:
Step 1: Set up Oracle DB as a source connector
1. Open the Airbyte platform and navigate to the "Sources" tab on the left-hand side of the screen.
2. Click on the "Oracle DB" source connector and select "Create new connection".
3. Enter a name for your connection and click "Next".
4. In the "Connection Configuration" section, enter the following information:
- Host: the hostname or IP address of your Oracle DB server
- Port: the port number used to connect to your Oracle DB server
- Database: the name of the database you want to connect to
- Username: your Oracle DB username
- Password: your Oracle DB password
5. Click "Test connection" to ensure that the connection is successful.
6. If the connection is successful, click "Next" to proceed to the "Schema Selection" section.
7. In the "Schema Selection" section, select the schema(s) you want to replicate data from.
8. Click "Create connection" to save your connection settings.
9. You can now create a new Oracle DB source in Airbyte and start replicating data from your Oracle DB database.
Step 2: Set up a destination for your extracted Oracle DB data
Choose from one of 50+ destinations where you want to import data from your Oracle DB source. This can be a cloud data warehouse, data lake, database, cloud storage, or any other supported Airbyte destination.
Step 3: Configure the Oracle DB data pipeline in Airbyte
Once you've set up both the source and destination, you need to configure the connection. This includes selecting the data you want to extract - streams and columns, all are selected by default -, the sync frequency, where in the destination you want that data to be loaded, among other options.
And that's it! It is the same process between Airbyte Open Source that you can deploy within 5 minutes, or Airbyte Cloud which you can try here, free for 14-days.
Conclusion
This article outlined the criteria that you should consider when choosing a data integration solution for Oracle DB ETL/ELT. Based on your requirements, you can select from any of the top 10 ETL/ELT tools listed above. We hope this article helped you understand why you should consider doing Oracle DB ETL and how to best do it.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:
What is ETL?
ETL (Extract, Transform, Load) is a process used to extract data from one or more data sources, transform the data to fit a desired format or structure, and then load the transformed data into a target database or data warehouse. ETL is typically used for batch processing and is most commonly associated with traditional data warehouses.
What is ELT?
More recently, ETL has been replaced by ELT (Extract, Load, Transform). ELT Tool is a variation of ETL one that automatically pulls data from even more heterogeneous data sources, loads that data into the target data repository - databases, data warehouses or data lakes - and then performs data transformations at the destination level. ELT provides significant benefits over ETL, such as:
- Faster processing times and loading speed
- Better scalability at a lower cost
- Support of more data sources (including Cloud apps), and of unstructured data
- Ability to have no-code data pipelines
- More flexibility and autonomy for data analysts with lower maintenance
- Better data integrity and reliability, easier identification of data inconsistencies
- Support of many more automations, including automatic schema change migration
Here is our recommendation for the criteria to consider:
- Connector need coverage: does the ETL tool extract data from all the multiple systems you need, should it be any cloud app or Rest API, relational databases or noSQL databases, csv files, etc.? Does it support the destinations you need to export data to - data warehouses, databases, or data lakes?
- Connector extensibility: for all those connectors, are you able to edit them easily in order to add a potentially missing endpoint, or to fix an issue on it if needed?
- Ability to build new connectors: all data integration solutions support a limited number of data sources.
- Support of change data capture: this is especially important for your databases.
- Data integration features and automations: including schema change migration, re-syncing of historical data when needed, scheduling feature
- Efficiency: how easy is the user interface (including graphical interface, API, and CLI if you need them)?
- Integration with the stack: do they integrate well with the other tools you might need - dbt, Airflow, Dagster, Prefect, etc. - ?
- Data transformation: Do they enable to easily transform data, and even support complex data transformations? Possibly through an square integration with dbt
- Level of support and high availability: how responsive and helpful the support is, what are the average % successful syncs for the connectors you need. The whole point of using ETL solutions is to give back time to your data team.
- Data reliability and scalability: do they have recognizable brands using them? It also shows how scalable and reliable they might be for high-volume data replication.
- Security and trust: there is nothing worse than a data leak for your company, the fine can be astronomical, but the trust broken with your customers can even have more impact. So checking the level of certification (SOC2, ISO) of the tools is paramount. You might want to expand to Europe, so you would need them to be GDPR-compliant too.
1. Airbyte
Airbyte is the leading open-source ELT platform, created in July 2020. Airbyte offers the largest catalog of data connectors—350 and growing—and has 40,000 data engineers using it to transfer data, syncing several PBs per month, as of June 2023. Major users include brands such as Siemens, Calendly, Angellist, and more. Airbyte integrates with dbt for its data transformation, and Airflow/Prefect/Dagster for orchestration. It is also known for its easy-to-use user interface, and has an API and Terraform Provider available.
What's unique about Airbyte?
Their ambition is to commoditize data integration by addressing the long tail of connectors through their growing contributor community. All Airbyte connectors are open-source which makes them very easy to edit. Airbyte also provides a Connector Development Kit to build new connectors from scratch in less than 30 minutes, and a no-code connector builder UI that lets you build one in less than 10 minutes without help from any technical person or any local development environment required..
Airbyte also provides stream-level control and visibility. If a sync fails because of a stream, you can relaunch that stream only. This gives you great visibility and control over your data.
Data professionals can either deploy and self-host Airbyte Open Source, or leverage the cloud-hosted solution Airbyte Cloud where the new pricing model distinguishes databases from APIs and files. Airbyte offers a 99% SLA on Generally Available data pipelines tools, and a 99.9% SLA on the platform.
2. Fivetran
Fivetran is a closed-source, managed ELT service that was created in 2012. Fivetran has about 300 data connectors and over 5,000 customers.
Fivetran offers some ability to edit current connectors and create new ones with Fivetran Functions, but doesn't offer as much flexibility as an open-source tool would.
What's unique about Fivetran?
Being the first ELT solution in the market, they are considered a proven and reliable choice. However, Fivetran charges on monthly active rows (in other words, the number of rows that have been edited or added in a given month), and are often considered very expensive.
Here are more critical insights on the key differentiations between Airbyte and Fivetran
3. Stitch Data
Stitch is a cloud-based platform for ETL that was initially built on top of the open-source ETL tool Singer.io. More than 3,000 companies use it.
Stitch was acquired by Talend, which was acquired by the private equity firm Thoma Bravo, and then by Qlik. These successive acquisitions decreased market interest in the Singer.io open-source community, making most of their open-source data connectors obsolete. Only their top 30 connectors continue to be maintained by the open-source community.
What's unique about Stitch?
Given the lack of quality and reliability in their connectors, and poor support, Stitch has adopted a low-cost approach.
Here are more insights on the differentiations between Airbyte and Stitch, and between Fivetran and Stitch.
Other potential services
4. Matillion
Matillion is a self-hosted ELT solution, created in 2011. It supports about 100 connectors and provides all extract, load and transform features. Matillion is used by 500+ companies across 40 countries.
What's unique about Matillion?
Being self-hosted means that Matillion ensures your data doesn’t leave your infrastructure and stays on premise. However, you might have to pay for several Matillion instances if you’re multi-cloud. Also, Matillion has verticalized its offer from offering all ELT and more. So Matillion doesn't integrate with other tools such as dbt, Airflow, and more.
Here are more insights on the differentiations between Airbyte and Matillion.
5. Airflow
Apache Airflow is an open-source workflow management tool. Airflow is not an ETL solution but you can use Airflow operators for data integration jobs. Airflow started in 2014 at Airbnb as a solution to manage the company's workflows. Airflow allows you to author, schedule and monitor workflows as DAG (directed acyclic graphs) written in Python.
What's unique about Airflow?
Airflow requires you to build data pipelines on top of its orchestration tool. You can leverage Airbyte for the data pipelines and orchestrate them with Airflow, significantly lowering the burden on your data engineering team.
Here are more insights on the differentiations between Airbyte and Airflow.
6. Talend
Talend is a data integration platform that offers a comprehensive solution for data integration, data management, data quality, and data governance.
What’s unique with Talend?
What sets Talend apart is its open-source architecture with Talend Open Studio, which allows for easy customization and integration with other systems and platforms. However, Talend is not an easy solution to implement and requires a lot of hand-holding, as it is an Enterprise product. Talend doesn't offer any self-serve option.
7. Pentaho
Pentaho is an ETL and business analytics software that offers a comprehensive platform for data integration, data mining, and business intelligence. It offers ETL, and not ELT and its benefits.
What is unique about Pentaho?
What sets Pentaho data integration apart is its original open-source architecture, which allows for easy customization and integration with other systems and platforms. Additionally, Pentaho provides advanced data analytics and reporting tools, including machine learning and predictive analytics capabilities, to help businesses gain insights and make data-driven decisions.
However, Pentaho is also an Enterprise product, so hard to implement without any self-serve option.
8. Informatica PowerCenter
Informatica PowerCenter is an ETL tool that supported data profiling, in addition to data cleansing and data transformation processes. It was also implemented in their customers' infrastructure, and is also an Enterprise product, so hard to implement without any self-serve option.
9. Microsoft SQL Server Integration Services (SSIS)
MS SQL Server Integration Services is the Microsoft alternative from within their Microsoft infrastructure. It offers ETL, and not ELT and its benefits.
10. Singer
Singer is also worth mentioning as the first open-source JSON-based ETL framework. It was introduced in 2017 by Stitch (which was acquired by Talend in 2018) as a way to offer extendibility to the connectors they had pre-built. Talend has unfortunately stopped investing in Singer’s community and providing maintenance for the Singer’s taps and targets, which are increasingly outdated, as mentioned above.
11. Rivery
Rivery is another cloud-based ELT solution. Founded in 2018, it presents a verticalized solution by providing built-in data transformation, orchestration and activation capabilities. Rivery offers 150+ connectors, so a lot less than Airbyte. Its pricing approach is usage-based with Rivery pricing unit that are a proxy for platform usage. The pricing unit depends on the connectors you sync from, which makes it hard to estimate.
12. HevoData
HevoData is another cloud-based ELT solution. Even if it was founded in 2017, it only supports 150 integrations, so a lot less than Airbyte. HevoData provides built-in data transformation capabilities, allowing users to apply transformations, mappings, and enrichments to the data before it reaches the destination. Hevo also provides data activation capabilities by syncing data back to the APIs.
13. Meltano
Meltano is an open-source orchestrator dedicated to data integration, spined off from Gitlab on top of Singer’s taps and targets. Since 2019, they have been iterating on several approaches. Meltano distinguishes itself with its focus on DataOps and the CLI interface. They offer a SDK to build connectors, but it requires engineering skills and more time to build than Airbyte’s CDK. Meltano doesn’t invest in maintaining the connectors and leave it to the Singer community, and thus doesn’t provide support package with any SLA.
Oracle DB provides access to a wide range of data types, including:
• Relational data: This includes tables, views, and indexes that are used to store and organize data in a structured manner.
• Spatial data: This includes data that is related to geographic locations, such as maps, satellite imagery, and GPS coordinates.
• Time-series data: This includes data that is related to time, such as stock prices, weather data, and sensor readings.
• Multimedia data: This includes data that is related to images, videos, and audio files.
• XML data: This includes data that is stored in XML format, such as web pages, documents, and other structured data.
• JSON data: This includes data that is stored in JSON format, such as web APIs, mobile apps, and other data sources.
• Graph data: This includes data that is related to relationships between entities, such as social networks, supply chains, and other complex systems.
Overall, Oracle DB's API provides access to a wide range of data types that can be used for a variety of applications, from business intelligence and analytics to machine learning and artificial intelligence.
1. Open the Airbyte platform and navigate to the "Sources" tab on the left-hand side of the screen.
2. Click on the "Oracle DB" source connector and select "Create new connection".
3. Enter a name for your connection and click "Next".
4. In the "Connection Configuration" section, enter the following information:
- Host: the hostname or IP address of your Oracle DB server
- Port: the port number used to connect to your Oracle DB server
- Database: the name of the database you want to connect to
- Username: your Oracle DB username
- Password: your Oracle DB password
5. Click "Test connection" to ensure that the connection is successful.
6. If the connection is successful, click "Next" to proceed to the "Schema Selection" section.
7. In the "Schema Selection" section, select the schema(s) you want to replicate data from.
8. Click "Create connection" to save your connection settings.
9. You can now create a new Oracle DB source in Airbyte and start replicating data from your Oracle DB database.
Once you've set up both the source and destination, you need to configure the connection. This includes selecting the data you want to extract - streams and columns, all are selected by default -, the sync frequency, where in the destination you want that data to be loaded, among other options.
And that's it! It is the same process between Airbyte Open Source that you can deploy within 5 minutes, or Airbyte Cloud which you can try here, free for 14-days.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:
Frequently Asked Questions
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Oracle DB is a fully scalable integrated cloud application and platform service; it is also referred to as a relational database architecture. It provides management and processing of data for both local and wide and networks. Offering software-as-a-service (SaaS), platform-as-a-service (PaaS), and infrastructure-as-a-service (IaaS), it sells a large variety of enterprise IT solutions that help companies streamline the business process, lower costs, and increase productivity.
Oracle DB provides access to a wide range of data types, including:
• Relational data: This includes tables, views, and indexes that are used to store and organize data in a structured manner.
• Spatial data: This includes data that is related to geographic locations, such as maps, satellite imagery, and GPS coordinates.
• Time-series data: This includes data that is related to time, such as stock prices, weather data, and sensor readings.
• Multimedia data: This includes data that is related to images, videos, and audio files.
• XML data: This includes data that is stored in XML format, such as web pages, documents, and other structured data.
• JSON data: This includes data that is stored in JSON format, such as web APIs, mobile apps, and other data sources.
• Graph data: This includes data that is related to relationships between entities, such as social networks, supply chains, and other complex systems.
Overall, Oracle DB's API provides access to a wide range of data types that can be used for a variety of applications, from business intelligence and analytics to machine learning and artificial intelligence.
This can be done by building a data pipeline manually, usually a Python script (you can leverage a tool as Apache Airflow for this). This process can take more than a full week of development. Or it can be done in minutes on Airbyte in three easy steps: set it up as a source, choose a destination among 50 available off the shelf, and define which data you want to transfer and how frequently.
The most prominent ETL tools to extract data include: Airbyte, Fivetran, StitchData, Matillion, and Talend Data Integration. These ETL and ELT tools help in extracting data from various sources (APIs, databases, and more), transforming it efficiently, and loading it into a database, data warehouse or data lake, enhancing data management capabilities.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.