

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by reviewing Adjust's documentation on their data export capabilities. Adjust provides APIs that allow you to extract raw data such as user engagement and attribution data. Identify the specific APIs you need to interact with and understand the authentication mechanisms, data formats, rate limits, and available endpoints.
Ensure you have a secure environment to interact with Adjust's API. This involves setting up a server or cloud-based service with the necessary security protocols (e.g., HTTPS, OAuth tokens) to securely authenticate and communicate with Adjust. Ensure you have the appropriate permissions and API keys configured.
Write a script, using a programming language like Python, Node.js, or Java, to interact with Adjust's API. This script should handle authentication, send requests to the API endpoints, and parse the JSON or CSV responses. Include error handling to manage API rate limits and network issues.
Once data is extracted, transform it into a format suitable for Kafka. Kafka typically works with JSON or Avro formats. Ensure the data is serialized correctly and consider any required data transformations or enrichments to meet your business requirements or Kafka�s schema expectations.
Install and configure Apache Kafka on a server or use a hosted Kafka service. Write a Kafka producer script, using a Kafka client library for your chosen programming language, to send the transformed data to Kafka. This script should specify the Kafka broker addresses, topic name, and any necessary configurations for batch processing or data partitioning.
Integrate the data extraction and transformation script with the Kafka producer script. This involves scheduling the data extraction script to run at regular intervals (e.g., using cron jobs or a task scheduler) and ensuring the transformed data is passed to the Kafka producer script for ingestion into the appropriate Kafka topics.
Once your pipeline is operational, set up monitoring to track the performance and reliability of both the data extraction from Adjust and the data ingestion into Kafka. Use tools like Prometheus, Grafana, or built-in Kafka metrics to monitor throughput, latency, and error rates. Continuously optimize your scripts and Kafka configurations to handle scale, improve performance, and ensure data integrity.
By following these steps, you will have established a direct data pipeline from Adjust to Kafka without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Adjust is a favorite mobile attribution and deep-linking platform that makes mobile marketing easy. It is a mobile marketing analytics platform trusted by marketers around the world. This permits you to understand your users through attribution, giving you detailed insights into their journey and overall product experience. With a special focus on fraud prevention and data protection, Adjust also provides sophisticated app analytics capabilities to drive your project strategy and optimize your customer experience.
Adjust's API provides access to a wide range of data related to mobile app marketing and user engagement. The following are the categories of data that can be accessed through Adjust's API:
1. Attribution data: This includes information about the source of app installs, such as the ad network, campaign, and creative.
2. In-app events data: This includes data related to user actions within the app, such as purchases, registrations, and other custom events.
3. User engagement data: This includes data related to user behavior within the app, such as session length, retention rate, and user churn.
4. Ad performance data: This includes data related to the performance of ad campaigns, such as impressions, clicks, and conversions.
5. Audience data: This includes data related to the demographics and behavior of app users, such as age, gender, location, and interests.
6. Fraud prevention data: This includes data related to the detection and prevention of fraudulent activity within the app, such as click spamming and install fraud.Overall, Adjust's API provides a comprehensive set of data that can be used to optimize mobile app marketing campaigns and improve user engagement.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: