

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say


"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."


“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
First, you need to export your data from BigQuery to Google Cloud Storage (GCS). Use the BigQuery Console or the `bq` command-line tool to export your tables. Make sure your data is exported in a format compatible with Redshift, such as CSV or JSON. For larger datasets, consider exporting in a compressed format like GZIP to save space and transfer time.
Once the data is exported to GCS, you need to download it to a local or intermediate storage location. You can use the Google Cloud Console to manually download the files or use the `gsutil` command-line tool for a more automated approach. Ensure you have the necessary permissions and that the files are downloaded securely.
After downloading the data, prepare an Amazon S3 bucket where you'll upload the data for Redshift to access. Create a new S3 bucket if you don't have one, and ensure it has the correct permissions for data upload. You can set up bucket policies to control access and ensure security of the data.
With your S3 bucket ready, upload the data files from your local storage to the bucket. Use the AWS Management Console for manual uploads or the `aws s3` command-line tool for batch uploads. Verify that all files are uploaded correctly and that they match the exported files from Google Cloud Storage.
Before importing data, ensure that your Redshift table schema matches the schema of the exported data. This involves creating tables in Redshift with the appropriate column definitions, data types, and constraints. Use the AWS Redshift Console or SQL commands to define the table structure.
Utilize the `COPY` command in Redshift to import data from your S3 bucket into Redshift tables. The `COPY` command is highly efficient for bulk data loading. Specify the data format and any necessary options like `DELIMITER` for CSV files or `FORMAT AS JSON` for JSON files. Ensure you have the necessary IAM roles and permissions set up for Redshift to access your S3 data.
After importing the data, perform checks to ensure data integrity and consistency. Compare row counts and sample data between your BigQuery source and Redshift destination to validate the transfer. Use SQL queries to spot-check data accuracy and confirm that the migration process is complete and successful.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
BigQuery is a cloud-based data warehousing and analytics platform that allows users to store, manage, and analyze large amounts of data in real-time. It is a fully managed service that eliminates the need for users to manage their own infrastructure, and it offers a range of features such as SQL querying, machine learning, and data visualization. BigQuery is designed to handle petabyte-scale datasets and can be used for a variety of use cases, including business intelligence, data exploration, and predictive analytics. It is a powerful tool for organizations looking to gain insights from their data and make data-driven decisions.
BigQuery provides access to a wide range of data types, including:
1. Structured data: This includes data that is organized into tables with defined columns and data types, such as CSV, JSON, and Avro files.
2. Semi-structured data: This includes data that has some structure, but not necessarily a fixed schema, such as XML and JSON files.
3. Unstructured data: This includes data that has no predefined structure, such as text, images, and videos.
4. Time-series data: This includes data that is organized by time, such as stock prices, weather data, and sensor readings.
5. Geospatial data: This includes data that is related to geographic locations, such as maps, GPS coordinates, and spatial databases.
6. Machine learning data: This includes data that is used to train machine learning models, such as labeled datasets and feature vectors.
7. Streaming data: This includes data that is generated in real-time, such as social media feeds, IoT sensor data, and log files.
Overall, BigQuery's API provides access to a wide range of data types, making it a powerful tool for data analysis and machine learning.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: