How to load data from Dockerhub to Postgres destination?


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say


"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."


“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
First, ensure that your local development environment is ready. Install Docker and PostgreSQL if they're not already on your machine. You can download Docker from its official website and PostgreSQL from its installer page. Verify the installations using terminal commands `docker --version` and `psql --version`.
Use Docker to pull the specific image from Docker Hub. This image contains the data you want to move. Run the command `docker pull [image-name]` in your terminal, replacing `[image-name]` with the name of the Docker image you want to pull.
Start a container from the pulled Docker image using the command `docker run -d --name [container-name] [image-name]`. Replace `[container-name]` with a suitable name for your container and `[image-name]` with the name of your Docker image. This will create and start a container instance based on the image.
Access your running container to locate the data you need to transfer. Use the command `docker exec -it [container-name] /bin/bash` to open a shell inside the container. Navigate through the file system within the container to find the data files. You can use commands like `ls` and `cd` to browse directories.
Once you have located the data, you need to export it from the container to your host system. Use the `docker cp` command to copy files from the container to your local machine: `docker cp [container-name]:[path-to-data] [local-path]`. Replace `[path-to-data]` with the file path inside the container and `[local-path]` with the destination path on your host.
Ensure that your PostgreSQL database is running and accessible. You might need to create a new database and table structure to fit the data format you have extracted. Use `psql` to create a new database and tables if necessary, using commands such as `CREATE DATABASE [database-name];` and `CREATE TABLE [table-name] (...);`.
Import the exported data into your PostgreSQL database. Depending on your data format, you can use the `COPY` command to move data from a file directly into a PostgreSQL table. For example, if your data is in a CSV format, execute the command `\COPY [table-name] FROM '[local-file-path]' DELIMITER ',' CSV HEADER;` in the `psql` environment, replacing `[table-name]` and `[local-file-path]` with your appropriate table name and file path.
By following these steps, you can move data from Docker Hub to a PostgreSQL destination without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Docker Hub is the world's easiest way to create, manage, and deliver your team's container applications. Docker Hub assists developers bring their ideas to life by conquering the complexity of app development. It can easily search more than one million container images, including Certified and community-provided images. Docker Hub gets access to free public repositories or choose a subscription plan for private ropes. It is entirely a trusted way to run more technology in containers with certified infrastructure, containers and plugins.
Dockerhub's API provides access to a wide range of data related to Docker images and repositories. The following are the categories of data that can be accessed through Dockerhub's API:
1. Repositories: Information about the repositories available on Dockerhub, including their names, descriptions, and tags.
2. Images: Details about the Docker images available on Dockerhub, including their names, tags, and sizes.
3. Users: Information about the users who have created and contributed to the repositories and images on Dockerhub.
4. Organizations: Details about the organizations that have created and contributed to the repositories and images on Dockerhub.
5. Webhooks: Information about the webhooks that have been set up for repositories and images on Dockerhub.
6. Builds: Details about the builds that have been performed on Dockerhub, including their status and logs.
7. Collaborators: Information about the collaborators who have access to the repositories and images on Dockerhub.
8. Permissions: Details about the permissions that have been set for repositories and images on Dockerhub, including read, write, and admin access.
Overall, Dockerhub's API provides a comprehensive set of data that can be used to manage and monitor Docker images and repositories.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: