

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say


"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."


“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Ensure that both MySQL and Redis are installed and running on your system. You will need the MySQL client to execute SQL queries and the Redis CLI to interact with your Redis server. Verify connectivity to both databases to avoid issues during data transfer.
Use a MySQL client or script to query the data you need to move. For instance, using a Python script with a MySQL connector, you can execute a SELECT statement to retrieve data. Store this data in a suitable format in your script, typically as dictionaries or lists.
Once you have the data from MySQL, it's important to transform it into a format suitable for Redis. Decide on the appropriate Redis data structure (e.g., String, Hash, List, Set) based on how you plan to use the data. For example, if you're transferring user profiles, a Hash might be appropriate.
Establish a connection to your Redis server using a Redis client library, such as `redis-py` in Python. This involves specifying the host and port of your Redis server and testing the connection to ensure it is successful.
Using the connection established in the previous step, iterate over your transformed data and load it into Redis. Use Redis commands that correspond to the data structure you've chosen. For example, if using Hashes, the `hmset` command can be used to insert each key-value pair into Redis.
After loading the data into Redis, verify that the data has been transferred correctly. You can do this by querying Redis for a few sample entries and comparing them with the original data in MySQL. Use Redis CLI commands to perform these checks.
If this data transfer needs to be performed regularly, consider automating the process with a script or cron job. Ensure that the script handles exceptions and logs errors to facilitate troubleshooting. This step can save time and reduce manual errors in repeated data transfers.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
MySQL is an SQL (Structured Query Language)-based open-source database management system. An application with many uses, it offers a variety of products, from free MySQL downloads of the most recent iteration to support packages with full service support at the enterprise level. The MySQL server, while most often used as a web database, also supports e-commerce and data warehousing applications and more.
MySQL provides access to a wide range of data types, including:
1. Numeric data types: These include integers, decimals, and floating-point numbers.
2. String data types: These include character strings, binary strings, and text strings.
3. Date and time data types: These include date, time, datetime, and timestamp.
4. Boolean data types: These include true/false or yes/no values.
5. Spatial data types: These include points, lines, polygons, and other geometric shapes.
6. Large object data types: These include binary large objects (BLOBs) and character large objects (CLOBs).
7. Collection data types: These include arrays, sets, and maps.
8. User-defined data types: These are custom data types created by the user.
Overall, MySQL's API provides access to a wide range of data types, making it a versatile tool for managing and manipulating data in a variety of applications.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: