Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by logging into your SurveyCTO account and accessing your project or form. Use the data export feature to download the dataset you want to transfer. Export the data in a structured format such as CSV or JSON, which can be processed and ingested by Elasticsearch.
Ensure that you have an Elasticsearch instance running. This can be a local setup or a cloud-based instance. Make sure you have access credentials and that your cluster is configured to accept data input. Set up indices in Elasticsearch where you want to store your SurveyCTO data. An index acts like a database in which you will organize and store your data.
Install necessary tools on your local machine or server to facilitate data processing and transfer. Python is a good choice due to its extensive libraries for handling data and communicating with Elasticsearch. Ensure you have Python installed along with the `pandas` library for data handling and `elasticsearch` package for interfacing with Elasticsearch.
Use Python to load the exported data file (CSV/JSON) into a data structure that can be processed, such as a Pandas DataFrame. Clean and transform the data as necessary to ensure it matches the desired structure of your Elasticsearch index. This may involve renaming fields, converting data types, or handling missing values.
Once the data is processed, convert the DataFrame or equivalent data structure into JSON documents. Each row in the DataFrame should be converted to a JSON object, which Elasticsearch can ingest. Use Python's built-in capabilities or libraries like `json` to accomplish this transformation.
Create a Python script using the `elasticsearch` library to send the JSON-formatted data to your Elasticsearch cluster. The script should iterate over the JSON documents and use the Elasticsearch client's `index` or `bulk` API to add each document to the designated index in Elasticsearch. Ensure your script includes error handling to manage any issues that arise during data transfer.
After successfully running your script, verify that the data has been correctly ingested into Elasticsearch. Use Kibana or Elasticsearch's API to query the indices and check that the data matches what was exported from SurveyCTO. Perform any necessary adjustments to the data or script if discrepancies are found.
By following these steps, you can effectively move data from SurveyCTO to Elasticsearch without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
SurveyCTO is a data collection platform that enables researchers, development professionals, and organizations to collect high-quality data using mobile devices. It offers a range of features such as offline data collection, real-time monitoring, and customizable forms that can be used for surveys, assessments, and evaluations. The platform also includes advanced data management tools, such as data cleaning and analysis, to help users make sense of their data. SurveyCTO is designed to be user-friendly and accessible, with support for multiple languages and a range of mobile devices. It is used by organizations around the world to collect data for research, monitoring, and evaluation purposes.
SurveyCTO's API provides access to a wide range of data related to surveys and data collection. The following are the categories of data that can be accessed through SurveyCTO's API:
1. Survey metadata: This includes information about the survey such as the survey name, form ID, and version.
2. Form data: This includes the data collected through the survey, such as responses to questions, timestamps, and geolocation data.
3. User data: This includes information about the users who have access to the survey, such as their usernames, roles, and permissions.
4. Device data: This includes information about the devices used to collect data, such as the device ID, model, and operating system.
5. Audit data: This includes information about the actions taken on the survey, such as when it was created, modified, or deleted.
6. Error data: This includes information about any errors that occurred during data collection, such as missing data or invalid responses.
Overall, SurveyCTO's API provides a comprehensive set of data that can be used to analyze and improve data collection processes.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





