Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by logging into your SurveyCTO account. Navigate to the Data tab and select the form from which you want to export data. Use the Export option to download the data in a CSV format, which is compatible with many data processing tools and platforms.
Open the exported CSV file using a spreadsheet application like Excel or Google Sheets. Inspect the data for any inconsistencies or errors. Clean the data by removing duplicates, correcting any malformed entries, and ensuring all necessary fields are populated accurately.
Once the data is cleaned, make sure that the CSV file is formatted correctly for Starburst Galaxy. Check that the data types (e.g., integer, string, date) align with the schema you plan to use in Starburst Galaxy. Adjust any column headers or data types as necessary to match this schema.
Log into your Starburst Galaxy account. If you haven't already, create a new catalog and schema where you will import your data. This involves setting up the necessary database configurations and ensuring that you have the appropriate permissions to create tables and load data.
Use the Starburst Galaxy SQL editor to create a new table that matches the schema of your CSV file. Define the table with the appropriate column names and data types. Make sure the table structure is compatible with the data you are importing from the CSV file.
Transfer your CSV file to a location that Starburst Galaxy can access. This might involve uploading the file to a cloud storage service that Starburst Galaxy can read from. Use the Starburst Galaxy interface to specify the file path and initiate the file upload process.
Execute a Starburst Galaxy SQL command to load the data from the CSV file into your newly created table. This command will typically look like a `COPY FROM` or `INSERT INTO` statement that reads from the CSV file path. Monitor the import process and verify that all data has been correctly loaded into the table.
By following these steps, you can successfully move data from SurveyCTO to Starburst Galaxy without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
SurveyCTO is a data collection platform that enables researchers, development professionals, and organizations to collect high-quality data using mobile devices. It offers a range of features such as offline data collection, real-time monitoring, and customizable forms that can be used for surveys, assessments, and evaluations. The platform also includes advanced data management tools, such as data cleaning and analysis, to help users make sense of their data. SurveyCTO is designed to be user-friendly and accessible, with support for multiple languages and a range of mobile devices. It is used by organizations around the world to collect data for research, monitoring, and evaluation purposes.
SurveyCTO's API provides access to a wide range of data related to surveys and data collection. The following are the categories of data that can be accessed through SurveyCTO's API:
1. Survey metadata: This includes information about the survey such as the survey name, form ID, and version.
2. Form data: This includes the data collected through the survey, such as responses to questions, timestamps, and geolocation data.
3. User data: This includes information about the users who have access to the survey, such as their usernames, roles, and permissions.
4. Device data: This includes information about the devices used to collect data, such as the device ID, model, and operating system.
5. Audit data: This includes information about the actions taken on the survey, such as when it was created, modified, or deleted.
6. Error data: This includes information about any errors that occurred during data collection, such as missing data or invalid responses.
Overall, SurveyCTO's API provides a comprehensive set of data that can be used to analyze and improve data collection processes.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





