Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
First, identify and understand the exact data you need to move from Timely. This includes determining the specific data fields, types of data, and the frequency with which the data should be moved. Review Timely’s API documentation to understand how to access and extract the required data.
Obtain API credentials to access Timely's API. This typically involves creating an API key or token through Timely's developer portal. Ensure that you have the necessary permissions to read the data you intend to export.
Write a script in a programming language of your choice (such as Python or Node.js) to interact with the Timely API. Use HTTP requests to fetch the data. Ensure your script handles authentication and pagination if the data set is large. Test the script to verify it retrieves the correct data by printing or logging the output.
Install and configure a Redis server on your local machine or a server environment. You can download Redis from the official website or use package managers like apt for Ubuntu or Homebrew for macOS. Once installed, start the Redis server and ensure it is running correctly by connecting to it using the Redis CLI.
Choose a Redis client library compatible with the programming language used for your script (e.g., `redis-py` for Python or `redis` for Node.js). Install the library using a package manager like pip for Python (`pip install redis`) or npm for Node.js (`npm install redis`).
Extend your original script to include functionality for writing data to Redis. Use the Redis client library to connect to your Redis server. Convert the data from Timely into a format compatible with Redis (e.g., key-value pairs, hashes, or lists). Write the data to Redis using appropriate commands (e.g., `SET`, `HSET`, or `LPUSH`).
Use a task scheduler like cron (for Unix-based systems) or Task Scheduler (for Windows) to automate the execution of your script at regular intervals. This ensures that the data in Redis stays updated with the latest information from Timely. Test the entire process to confirm that it runs smoothly and handles any potential errors or exceptions gracefully.
By following these steps, you can move data from Timely to Redis efficiently without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Timely's time tracking software , which helps teams stay connected and report accurately across client, project and employee hours. Using Timely's software one can manage their business, connect with their peers and access education from global industry. Timely is used to narrate something that happens at the right time or the scheduled time, as in a timely payment or a timely delivery. Timely Event Software, the top event technology and tools to automate and simplify the management of events, venues and learning.
Timely's API provides access to a wide range of data related to time tracking and project management. The following are the categories of data that can be accessed through Timely's API:
1. Time tracking data: This includes data related to the time spent on tasks, projects, and clients.
2. Project management data: This includes data related to project timelines, milestones, and budgets.
3. User data: This includes data related to user profiles, roles, and permissions.
4. Billing data: This includes data related to invoices, payments, and expenses.
5. Reporting data: This includes data related to reports on time tracking, project management, and billing.
6. Integration data: This includes data related to integrations with other tools and platforms. 7. Custom data: This includes data that can be customized based on the specific needs of the user.
Overall, Timely's API provides a comprehensive set of data that can be used to improve time tracking, project management, and billing processes.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





