Summarize this article with:


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes
Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by exporting your data from Vitally. This typically involves navigating to the data export section within Vitally's interface. Choose the data you wish to export, and select a format compatible with BigQuery, such as CSV or JSON. Initiate the export process and download the data file to your local machine.
Set up your local environment for data processing. Ensure you have Python installed along with the Google Cloud SDK. Additionally, install any necessary libraries like `pandas` for data manipulation and `google-cloud-bigquery` for interacting with BigQuery.
Depending on the data structure from Vitally, you may need to transform it to fit BigQuery's schema. Use a scripting language like Python to open the exported file, clean the data, and transform it as needed. For instance, you might use `pandas` to read the CSV file and adjust column names, data types, or filter specific rows.
If you haven't already, create a Google Cloud Project. Go to the Google Cloud Console and set up a new project. Enable the BigQuery API for this project. This will allow you to interact with BigQuery and upload your data.
Within your Google Cloud Project, open BigQuery and create a new dataset. Name it appropriately to reflect the data you are importing. Within this dataset, define a new table that matches the schema of your transformed data. Ensure that the column names and data types in BigQuery correspond to those in your CSV or JSON file.
Using the Google Cloud SDK and the `google-cloud-bigquery` library, write a Python script to upload your data. Authenticate your script to access your Google Cloud Project. Utilize the BigQuery client to load your transformed data file into the table you created in the previous step. Handle any errors that may arise during the upload process.
After the data upload is complete, verify the integrity of the data in BigQuery. Run queries to check for consistency, accuracy, and completeness of the data. Compare a subset of the data with the original data in Vitally to ensure there are no discrepancies. Make any necessary adjustments and re-upload if required.
By following these steps, you will successfully transfer data from Vitally to BigQuery without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Vitally is a customer engagement platform for B2B SaaS companies to drive a world-class customer experience and eliminate churn. Our easy-to-use platform integrates all your customer data and provides a 360 degree view into the metrics that matter most to you, allows you to set up health scores and notifications, and create powerful automationplaybooks.
Vitally's API provides access to a wide range of data related to customer success and engagement. The following are the categories of data that can be accessed through Vitally's API:
1. Account Data: This includes information about the customer's account, such as account name, account ID, and account status.
2. User Data: This includes information about the users associated with the account, such as user name, user ID, and user role.
3. Activity Data: This includes information about the activities performed by the users, such as login activity, feature usage, and engagement metrics.
4. Support Data: This includes information about the customer support interactions, such as support tickets, chat logs, and email conversations.
5. Health Data: This includes information about the health of the customer account, such as usage trends, churn risk, and renewal probability.
6. Feedback Data: This includes information about the customer feedback, such as survey responses, NPS scores, and customer reviews.
Overall, Vitally's API provides a comprehensive set of data that can be used to gain insights into customer behavior, engagement, and satisfaction, and to optimize customer success strategies.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey:





