Summarize


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
First, familiarize yourself with the data export capabilities provided by Vitally. Log into your Vitally account and explore options for exporting data, such as CSV or JSON formats. Note any limitations regarding the size or frequency of exports.
Navigate to the section in Vitally that allows you to export data. Choose the desired dataset you wish to export, select the necessary format (e.g., CSV or JSON), and initiate the export process. Save the exported file to a local directory on your computer.
Ensure you have the AWS Command Line Interface (CLI) installed on your computer. If not, download and install it from the AWS CLI official page. Configure the AWS CLI with your credentials by running `aws configure` in your terminal, and provide your AWS Access Key, Secret Key, region, and preferred output format when prompted.
Log into your AWS Management Console and navigate to the S3 service. Create a new bucket by clicking on "Create Bucket." Follow the instructions to name your bucket and choose the appropriate AWS region. Ensure the bucket's permissions and settings comply with your data privacy and access requirements.
Before uploading, ensure your exported data file is formatted correctly and contains no errors. If necessary, clean or modify the file to fit your needs. This step might involve checking the file for consistency or converting it to a compatible format if needed.
Use the AWS CLI to upload your data file to the newly created S3 bucket. Open your terminal and run the command:
```
aws s3 cp /path/to/your/exportedfile.csv s3://your-bucket-name/
```
Replace `/path/to/your/exportedfile.csv` with the path to your file and `your-bucket-name` with the name of your S3 bucket. This command will copy your file from your local machine to the S3 bucket.
After the upload is complete, go back to the AWS Management Console, open your S3 bucket, and verify that your data file appears in the bucket. Adjust the file permissions as necessary to ensure the correct access level is set. You can manage permissions directly in the console or via the AWS CLI with the `aws s3api put-object-acl` command.
Following these steps will enable you to move data from Vitally to Amazon S3 without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Vitally is a customer engagement platform for B2B SaaS companies to drive a world-class customer experience and eliminate churn. Our easy-to-use platform integrates all your customer data and provides a 360 degree view into the metrics that matter most to you, allows you to set up health scores and notifications, and create powerful automationplaybooks.
Vitally's API provides access to a wide range of data related to customer success and engagement. The following are the categories of data that can be accessed through Vitally's API:
1. Account Data: This includes information about the customer's account, such as account name, account ID, and account status.
2. User Data: This includes information about the users associated with the account, such as user name, user ID, and user role.
3. Activity Data: This includes information about the activities performed by the users, such as login activity, feature usage, and engagement metrics.
4. Support Data: This includes information about the customer support interactions, such as support tickets, chat logs, and email conversations.
5. Health Data: This includes information about the health of the customer account, such as usage trends, churn risk, and renewal probability.
6. Feedback Data: This includes information about the customer feedback, such as survey responses, NPS scores, and customer reviews.
Overall, Vitally's API provides a comprehensive set of data that can be used to gain insights into customer behavior, engagement, and satisfaction, and to optimize customer success strategies.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: