Wikipedia Pageviews provides data on how often each Wikipedia page is viewed. It's useful for tracking trends, analyzing content popularity, and informing content strategy decisions.
Top companies trust Airbyte to centralize their Data
This includes selecting the data you want to extract - streams and columns -, the sync frequency, where in the destination you want that data to be loaded.
This includes selecting the data you want to extract - streams and columns -, the sync frequency, where in the destination you want that data to be loaded.
Set up a source connector to extract data from in Airbyte
Choose from one of 400 sources where you want to import data from. This can be any API tool, cloud data warehouse, database, data lake, files, among other source types. You can even build your own source connector in minutes with our no-code no-code connector builder.
Configure the connection in Airbyte
The Airbyte Open Data Movement Platform
The only open solution empowering data teams to meet growing business demands in the new AI era.
Leverage the largest catalog of connectors
Cover your custom needs with our extensibility
Free your time from maintaining connectors, with automation
- Automated schema change handling, data normalization and more
- Automated data transformation orchestration with our dbt integration
- Automated workflow with our Airflow, Dagster and Prefect integration
Reliability at every level
Ship more quickly with the only solution that fits ALL your needs.
As your tools and edge cases grow, you deserve an extensible and open ELT solution that eliminates the time you spend on building and maintaining data pipelines
Leverage the largest catalog of connectors
Cover your custom needs with our extensibility
Free your time from maintaining connectors, with automation
- Automated schema change handling, data normalization and more
- Automated data transformation orchestration with our dbt integration
- Automated workflow with our Airflow, Dagster and Prefect integration
Reliability at every level
Ship more quickly with the only solution that fits ALL your needs.
As your tools and edge cases grow, you deserve an extensible and open ELT solution that eliminates the time you spend on building and maintaining data pipelines
Leverage the largest catalog of connectors
Cover your custom needs with our extensibility
Free your time from maintaining connectors, with automation
- Automated schema change handling, data normalization and more
- Automated data transformation orchestration with our dbt integration
- Automated workflow with our Airflow, Dagster and Prefect integration
Reliability at every level
Move large volumes, fast.
Change Data Capture.
Security from source to destination.
We support the CDC methods your company needs
Log-based CDC
Timestamp-based CDC
Airbyte Open Source
Airbyte Cloud
Airbyte Enterprise
Why choose Airbyte as the backbone of your data infrastructure?
Keep your data engineering costs in check
Get Airbyte hosted where you need it to be
- Airbyte Cloud: Have it hosted by us, with all the security you need (SOC2, ISO, GDPR, HIPAA Conduit).
- Airbyte Enterprise: Have it hosted within your own infrastructure, so your data and secrets never leave it.
White-glove enterprise-level support
Including for your Airbyte Open Source instance with our premium support.
Airbyte supports a growing list of destinations, including cloud data warehouses, lakes, and databases.
Airbyte supports a growing list of destinations, including cloud data warehouses, lakes, and databases.
Airbyte supports a growing list of sources, including API tools, cloud data warehouses, lakes, databases, and files, or even custom sources you can build.
Fnatic, based out of London, is the world's leading esports organization, with a winning legacy of 16 years and counting in over 28 different titles, generating over 13m USD in prize money. Fnatic has an engaged follower base of 14m across their social media platforms and hundreds of millions of people watch their teams compete in League of Legends, CS:GO, Dota 2, Rainbow Six Siege, and many more titles every year.
Ready to get started?
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Page view statistics is a tool that is entirely available for Wikipedia pages, that helps to see how many people have visited an article during a given time period. Using Wikipedia Pageviews there are some limitations. There are many things which need to be considered before using such statistics to make conclusions about an ongoing discussion. There are also some software limitations and circumstances that may influence them, both from inside and outside Wikipedia. For aggregating per project and per project per country, a Pageview statistics are available.
The Wikipedia Pageviews API provides access to various types of data related to the pageviews of Wikipedia articles. Some of the categories of data that can be accessed through this API are:
1. Pageviews: The API provides access to the number of pageviews for a particular Wikipedia article over a specific time period.
2. Language: The API allows users to filter the data by language, enabling them to retrieve pageviews for articles in a specific language.
3. Device type: The API provides data on the type of device used to access the Wikipedia article, such as desktop, mobile, or tablet.
4. Geographic location: The API allows users to filter the data by geographic location, enabling them to retrieve pageviews for articles in a specific country or region.
5. Time period: The API provides data on pageviews over a specific time period, such as hourly, daily, weekly, or monthly.
6. Referrer: The API provides data on the source of the pageview, such as whether it was from a search engine or a social media platform.
Overall, the Wikipedia Pageviews API provides a wealth of data related to the popularity and usage of Wikipedia articles, which can be used for various research and analytical purposes.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Page view statistics is a tool that is entirely available for Wikipedia pages, that helps to see how many people have visited an article during a given time period. Using Wikipedia Pageviews there are some limitations. There are many things which need to be considered before using such statistics to make conclusions about an ongoing discussion. There are also some software limitations and circumstances that may influence them, both from inside and outside Wikipedia. For aggregating per project and per project per country, a Pageview statistics are available.
The Wikipedia Pageviews API provides access to various types of data related to the pageviews of Wikipedia articles. Some of the categories of data that can be accessed through this API are:
1. Pageviews: The API provides access to the number of pageviews for a particular Wikipedia article over a specific time period.
2. Language: The API allows users to filter the data by language, enabling them to retrieve pageviews for articles in a specific language.
3. Device type: The API provides data on the type of device used to access the Wikipedia article, such as desktop, mobile, or tablet.
4. Geographic location: The API allows users to filter the data by geographic location, enabling them to retrieve pageviews for articles in a specific country or region.
5. Time period: The API provides data on pageviews over a specific time period, such as hourly, daily, weekly, or monthly.
6. Referrer: The API provides data on the source of the pageview, such as whether it was from a search engine or a social media platform.
Overall, the Wikipedia Pageviews API provides a wealth of data related to the popularity and usage of Wikipedia articles, which can be used for various research and analytical purposes.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Page view statistics is a tool that is entirely available for Wikipedia pages, that helps to see how many people have visited an article during a given time period. Using Wikipedia Pageviews there are some limitations. There are many things which need to be considered before using such statistics to make conclusions about an ongoing discussion. There are also some software limitations and circumstances that may influence them, both from inside and outside Wikipedia. For aggregating per project and per project per country, a Pageview statistics are available.
The Wikipedia Pageviews API provides access to various types of data related to the pageviews of Wikipedia articles. Some of the categories of data that can be accessed through this API are:
1. Pageviews: The API provides access to the number of pageviews for a particular Wikipedia article over a specific time period.
2. Language: The API allows users to filter the data by language, enabling them to retrieve pageviews for articles in a specific language.
3. Device type: The API provides data on the type of device used to access the Wikipedia article, such as desktop, mobile, or tablet.
4. Geographic location: The API allows users to filter the data by geographic location, enabling them to retrieve pageviews for articles in a specific country or region.
5. Time period: The API provides data on pageviews over a specific time period, such as hourly, daily, weekly, or monthly.
6. Referrer: The API provides data on the source of the pageview, such as whether it was from a search engine or a social media platform.
Overall, the Wikipedia Pageviews API provides a wealth of data related to the popularity and usage of Wikipedia articles, which can be used for various research and analytical purposes.
1. Open the Airbyte platform and navigate to the "Sources" tab on the left-hand side of the screen.
2. Click on the "Add Source" button and select "Wikipedia Pageviews" from the list of available connectors.
3. In the "Configuration" tab, enter the required credentials for your Wikipedia account, including the username and password.
4. Select the language and project for which you want to retrieve pageviews data.
5. Choose the date range for which you want to retrieve data, either by selecting a preset range or by entering custom start and end dates.
6. Click on the "Test" button to ensure that the connection is successful and that data is being retrieved.
7. Once the test is successful, click on the "Save" button to save the configuration and add the Wikipedia Pageviews source to your Airbyte workspace.
8. You can now use this source to create a pipeline and extract data from Wikipedia Pageviews.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.