

Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Familiarize yourself with the ClickUp API documentation. Identify the specific data you want to extract, such as tasks, lists, or team information. Note the endpoints and the required authentication methods that allow access to ClickUp data.
Log into your ClickUp account and navigate to the Apps section. Generate a new API token which will be used to authenticate your API requests. Keep this token secure, as it grants access to your ClickUp data.
Install necessary tools such as Python or Node.js on your local machine. These will be used to write scripts to connect to the ClickUp API, fetch the desired data, and process it for uploading to S3.
Create a script using your preferred programming language to send HTTP GET requests to the ClickUp API endpoints using the generated API token for authentication. Parse the JSON responses to extract the necessary data. Store this data in a structured format such as CSV or JSON files.
Set up an AWS S3 bucket where the fetched data will be stored. Configure appropriate permissions for the bucket, ensuring that data uploads will be secure and comply with your organization's security policies.
Download and install the AWS Command Line Interface (CLI) on your local machine. Use the `aws configure` command to set up your AWS credentials and default region. This allows the CLI to authenticate and interact with your AWS resources securely.
Extend your data extraction script to include a function that uses the AWS SDK (such as boto3 for Python) or AWS CLI commands to upload the processed data files to your S3 bucket. Ensure that the data is uploaded to the correct path within the bucket and verify the upload to confirm successful data transfer.
By following these steps, you can efficiently move data from ClickUp to an Amazon S3 bucket without relying on third-party integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
ClickUp is an all in one productivity platform that is a cloud-based collaboration and project management tool suitable for businesses of all sizes and industries. It is a project management tool that aims to form your business life easier. ClickUp is the perfect tool for creating & customizing beautiful Gantt charts and is used by 100,000+ teams in companies like Airbnb, Google, and Uber! ClickUp is a strong project management software designed for teams and individuals.
ClickUp's API provides access to a wide range of data related to tasks, projects, and teams. The following are the categories of data that can be accessed through ClickUp's API:
1. Tasks: Information related to individual tasks such as task name, description, due date, status, priority, and assignee.
2. Projects: Data related to projects such as project name, description, start and end dates, and project status.
3. Teams: Information related to teams such as team name, members, and permissions.
4. Time tracking: Data related to time tracking such as time spent on tasks, time entries, and time reports.
5. Custom fields: Information related to custom fields such as field name, type, and value.
6. Comments: Data related to comments on tasks such as comment text, author, and timestamp.
7. Checklists: Information related to checklists such as checklist name, items, and completion status.
8. Attachments: Data related to attachments such as attachment name, type, and URL.
9. Tags: Information related to tags such as tag name, color, and usage.
Overall, ClickUp's API provides access to a comprehensive set of data that can be used to build custom integrations and automate workflows.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: