Top companies trust Airbyte to centralize their Data
Select your source
Select your destination
Sync your Data
Ship more quickly with the only solution that fits ALL your needs.
As your tools and edge cases grow, you deserve an extensible and open ELT solution that eliminates the time you spend on building and maintaining data pipelines
Leverage the largest catalog of connectors
Cover your custom needs with our extensibility
Free your time from maintaining connectors, with automation
- Automated schema change handling, data normalization and more
- Automated data transformation orchestration with our dbt integration
- Automated workflow with our Airflow, Dagster and Prefect integration
Reliability at every level
Airbyte Open Source
Airbyte Cloud
Airbyte Enterprise
Why choose Airbyte as the backbone of your data infrastructure?
Keep your data engineering costs in check
Get Airbyte hosted where you need it to be
- Airbyte Cloud: Have it hosted by us, with all the security you need (SOC2, ISO, GDPR, HIPAA Conduit).
- Airbyte Enterprise: Have it hosted within your own infrastructure, so your data and secrets never leave it.
White-glove enterprise-level support
Including for your Airbyte Open Source instance with our premium support.
Fnatic, based out of London, is the world's leading esports organization, with a winning legacy of 16 years and counting in over 28 different titles, generating over 13m USD in prize money. Fnatic has an engaged follower base of 14m across their social media platforms and hundreds of millions of people watch their teams compete in League of Legends, CS:GO, Dota 2, Rainbow Six Siege, and many more titles every year.
Ready to get started?
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Everhour is a time tracking and project management tool that helps businesses and teams to manage their time more efficiently. It integrates with popular project management tools like Asana, Trello, and Basecamp, allowing users to track time spent on tasks and projects directly from those platforms. Everhour also offers features like budget tracking, invoicing, and reporting, giving businesses a comprehensive view of their time and project management. With Everhour, teams can easily collaborate, manage their workload, and stay on top of deadlines, ultimately improving productivity and profitability.
MongoDB is a database that powers crucial applications and systems for global businesses. Designed for developers and specializing in the areas of open source, software development, and databases, it offers functionality such as horizontal scaling, automatic failover, and the capability to assign data to a location.
Everhour's API provides access to a wide range of data related to time tracking and project management. The following are the categories of data that can be accessed through Everhour's API:
1. Time tracking data: This includes data related to the time spent on tasks, projects, and clients.
2. Project management data: This includes data related to projects, tasks, and subtasks, such as their status, due dates, and assignees.
3. User data: This includes data related to users, such as their name, email address, and role.
4. Billing data: This includes data related to billing, such as the amount billed, the currency used, and the payment status.
5. Reporting data: This includes data related to reports, such as the type of report, the date range, and the data included in the report.
6. Integration data: This includes data related to integrations with other tools, such as the name of the integration, the status, and the configuration settings.
Overall, Everhour's API provides a comprehensive set of data that can be used to track time, manage projects, and analyze performance.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.