Top companies trust Airbyte to centralize their Data
Sync your Data
Ship more quickly with the only solution that fits ALL your needs.
As your tools and edge cases grow, you deserve an extensible and open ELT solution that eliminates the time you spend on building and maintaining data pipelines
Leverage the largest catalog of connectors
Cover your custom needs with our extensibility
Free your time from maintaining connectors, with automation
- Automated schema change handling, data normalization and more
- Automated data transformation orchestration with our dbt integration
- Automated workflow with our Airflow, Dagster and Prefect integration
Reliability at every level
Airbyte Open Source
Airbyte Cloud
Airbyte Enterprise
Why choose Airbyte as the backbone of your data infrastructure?
Keep your data engineering costs in check
Get Airbyte hosted where you need it to be
- Airbyte Cloud: Have it hosted by us, with all the security you need (SOC2, ISO, GDPR, HIPAA Conduit).
- Airbyte Enterprise: Have it hosted within your own infrastructure, so your data and secrets never leave it.
White-glove enterprise-level support
Including for your Airbyte Open Source instance with our premium support.
Fnatic, based out of London, is the world's leading esports organization, with a winning legacy of 16 years and counting in over 28 different titles, generating over 13m USD in prize money. Fnatic has an engaged follower base of 14m across their social media platforms and hundreds of millions of people watch their teams compete in League of Legends, CS:GO, Dota 2, Rainbow Six Siege, and many more titles every year.
Ready to get started?
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Facebook Pages permits businesses to promote their brand, grow their audience and start conversations with customers and people interested in learning more. A Facebook Page is where customers go to discover and engage with your business. Setting up a Page is simple and free, and it looks great on both desktop. A Facebook page is a public profile specifically created for businesses, brands, celebrities, causes, and other organizations. It provides a way for businesses and other organizations to interact with rather than just advertise to potential.
Amazon DynamoDB is a fully managed proprietary NoSQL database service that supports key–value and document data structures and is offered by Amazon.com as part of the Amazon Web Services portfolio. DynamoDB exposes a similar data model to and derives its name from Dynamo, but has a different underlying implementation.
The Facebook Pages API provides access to a wide range of data related to Facebook Pages. The following are the categories of data that can be accessed through the API:
1. Page Information: This includes basic information about the page such as name, category, description, and contact information.
2. Posts: This includes all the posts made by the page, including status updates, photos, videos, and links.
3. Comments: This includes all the comments made on the page's posts.
4. Reactions: This includes the number of likes, loves, wows, hahas, sads, and angries on the page's posts.
5. Insights: This includes data related to the page's performance, such as reach, engagement, and follower demographics.
6. Messages: This includes all the messages sent to the page by users.
7. Reviews: This includes all the reviews left by users on the page.
8. Events: This includes all the events created by the page.
9. Videos: This includes all the videos uploaded by the page.
10. Photos: This includes all the photos uploaded by the page.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.