Top companies trust Airbyte to centralize their Data
Sync your Data
Ship more quickly with the only solution that fits ALL your needs.
As your tools and edge cases grow, you deserve an extensible and open ELT solution that eliminates the time you spend on building and maintaining data pipelines
Leverage the largest catalog of connectors
Cover your custom needs with our extensibility
Free your time from maintaining connectors, with automation
- Automated schema change handling, data normalization and more
- Automated data transformation orchestration with our dbt integration
- Automated workflow with our Airflow, Dagster and Prefect integration
Reliability at every level
Airbyte Open Source
Airbyte Cloud
Airbyte Enterprise
Why choose Airbyte as the backbone of your data infrastructure?
Keep your data engineering costs in check
Get Airbyte hosted where you need it to be
- Airbyte Cloud: Have it hosted by us, with all the security you need (SOC2, ISO, GDPR, HIPAA Conduit).
- Airbyte Enterprise: Have it hosted within your own infrastructure, so your data and secrets never leave it.
White-glove enterprise-level support
Including for your Airbyte Open Source instance with our premium support.
Fnatic, based out of London, is the world's leading esports organization, with a winning legacy of 16 years and counting in over 28 different titles, generating over 13m USD in prize money. Fnatic has an engaged follower base of 14m across their social media platforms and hundreds of millions of people watch their teams compete in League of Legends, CS:GO, Dota 2, Rainbow Six Siege, and many more titles every year.
Ready to get started?
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Google Cloud Storage is a cloud-based storage service that allows users to store and access their data from anywhere in the world. It provides a highly scalable and durable storage solution for businesses and individuals, with features such as automatic data replication, versioning, and access control. Google Cloud Storage offers different storage classes to suit different needs, including multi-regional, regional, nearline, and coldline storage. It also integrates with other Google Cloud services, such as BigQuery and Cloud Functions, to enable data analysis and processing. Overall, Google Cloud Storage provides a reliable and flexible storage solution for businesses of all sizes.
MySQL is an SQL (Structured Query Language)-based open-source database management system. An application with many uses, it offers a variety of products, from free MySQL downloads of the most recent iteration to support packages with full service support at the enterprise level. The MySQL platform, while most often used as a web database, also supports e-commerce and data warehousing applications, and more.
Google Cloud Storage's API provides access to various types of data, including:
1. Object data: This includes files and other data objects stored in Google Cloud Storage buckets.
2. Metadata: This includes information about the objects stored in the buckets, such as their size, creation date, and content type.
3. Access control data: This includes information about who has access to the objects stored in the buckets and what level of access they have.
4. Bucket data: This includes information about the buckets themselves, such as their name, location, and storage class.
5. Logging data: This includes information about the activity in the buckets, such as who accessed them and when.
6. Transfer data: This includes information about data transfers to and from the buckets, such as the amount of data transferred and the transfer speed.
Overall, the Google Cloud Storage API provides access to a wide range of data related to object storage and management in the cloud.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.