Top companies trust Airbyte to centralize their Data
Sync your Data
Ship more quickly with the only solution that fits ALL your needs.
As your tools and edge cases grow, you deserve an extensible and open ELT solution that eliminates the time you spend on building and maintaining data pipelines
Leverage the largest catalog of connectors
Cover your custom needs with our extensibility
Free your time from maintaining connectors, with automation
- Automated schema change handling, data normalization and more
- Automated data transformation orchestration with our dbt integration
- Automated workflow with our Airflow, Dagster and Prefect integration
Reliability at every level
Airbyte Open Source
Airbyte Cloud
Airbyte Enterprise
Why choose Airbyte as the backbone of your data infrastructure?
Keep your data engineering costs in check
Get Airbyte hosted where you need it to be
- Airbyte Cloud: Have it hosted by us, with all the security you need (SOC2, ISO, GDPR, HIPAA Conduit).
- Airbyte Enterprise: Have it hosted within your own infrastructure, so your data and secrets never leave it.
White-glove enterprise-level support
Including for your Airbyte Open Source instance with our premium support.
Fnatic, based out of London, is the world's leading esports organization, with a winning legacy of 16 years and counting in over 28 different titles, generating over 13m USD in prize money. Fnatic has an engaged follower base of 14m across their social media platforms and hundreds of millions of people watch their teams compete in League of Legends, CS:GO, Dota 2, Rainbow Six Siege, and many more titles every year.
Ready to get started?
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Gridly is a cloud-based headless CMS for multilingual game-as-a-service projects with an open API, browser-based spreadsheet UI, and built-in functions to handle localization and frequent updates. It is a collaborative system for users of any technical ability. Gridly is spreadsheet for multi-language content tailor-made for games and digital products. By connecting development, design, and localization teams and their tools, Gridly serves as a single source of truth for faster content updates. Gridly improves collaboration and streamlines content management and localization for your games or apps.
Databricks is an American enterprise software company founded by the creators of Apache Spark. Databricks combines data warehouses and data lakes into a lakehouse architecture.
Gridly's API provides access to various types of data that can be used to manage and organize content for web and mobile applications. The following are the categories of data that Gridly's API gives access to:
1. Content data: This includes all the content that is stored in Gridly, such as text, images, videos, and audio files.
2. Metadata: This includes information about the content, such as the date it was created, the author, and any tags or categories associated with it.
3. User data: This includes information about the users who access the content, such as their login credentials, preferences, and activity history.
4. Analytics data: This includes data about how users interact with the content, such as page views, clicks, and engagement metrics.
5. Configuration data: This includes settings and configurations for the application, such as user permissions, access controls, and integration with other systems.
Overall, Gridly's API provides a comprehensive set of data that can be used to build and manage content-rich applications.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.