Top companies trust Airbyte to centralize their Data
Sync your Data
Ship more quickly with the only solution that fits ALL your needs.
As your tools and edge cases grow, you deserve an extensible and open ELT solution that eliminates the time you spend on building and maintaining data pipelines
Leverage the largest catalog of connectors
Cover your custom needs with our extensibility
Free your time from maintaining connectors, with automation
- Automated schema change handling, data normalization and more
- Automated data transformation orchestration with our dbt integration
- Automated workflow with our Airflow, Dagster and Prefect integration
Reliability at every level
Airbyte Open Source
Airbyte Cloud
Airbyte Enterprise
Why choose Airbyte as the backbone of your data infrastructure?
Keep your data engineering costs in check
Get Airbyte hosted where you need it to be
- Airbyte Cloud: Have it hosted by us, with all the security you need (SOC2, ISO, GDPR, HIPAA Conduit).
- Airbyte Enterprise: Have it hosted within your own infrastructure, so your data and secrets never leave it.
White-glove enterprise-level support
Including for your Airbyte Open Source instance with our premium support.
Fnatic, based out of London, is the world's leading esports organization, with a winning legacy of 16 years and counting in over 28 different titles, generating over 13m USD in prize money. Fnatic has an engaged follower base of 14m across their social media platforms and hundreds of millions of people watch their teams compete in League of Legends, CS:GO, Dota 2, Rainbow Six Siege, and many more titles every year.
Ready to get started?
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Iterable is a marketing platform designed to help businesses grow. Its automated platform enables businesses to measure and optimize customer interactions, with the ability to easily create and execute cross-channel campaigns. Through in-app notifications, email, SMS, web and mobile push, and social media integrations, Iterable powers the entire customer engagement lifecycle, throughout all stages of the customer journey.
For huge analytical tables, Apache Iceberg is a high-performance format. Using Apache Iceberg, engines such as Spark, Trino, Flink, Presto, Hive and Impala can safely work with the same tables, at the same time, providing the reliability and simplicity of SQL tables to big data. With Apache Iceberg, you can merge new data, update existing rows, and delete specific rows. Data files can be eagerly rewritten or deleted deltas can be used to make updates faster.
Iterable's API provides access to a wide range of data related to customer engagement and marketing campaigns. The following are the categories of data that can be accessed through Iterable's API:
1. User data: This includes information about individual users such as their email address, name, location, and other demographic information.
2. Campaign data: This includes information about marketing campaigns such as email campaigns, push notifications, and SMS campaigns. It includes data on the number of messages sent, open rates, click-through rates, and conversion rates.
3. Event data: This includes data on user behavior such as website visits, product purchases, and other actions taken by users.
4. List data: This includes information about the lists of users that have been created in Iterable, including the number of users in each list and their engagement history.
5. Template data: This includes information about the email templates and other marketing materials used in campaigns, including their design, content, and performance metrics.
6. Analytics data: This includes data on the performance of marketing campaigns, including metrics such as revenue generated, customer lifetime value, and return on investment.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.