Top companies trust Airbyte to centralize their Data
Select your source
Select your destination
Sync your Data
Ship more quickly with the only solution that fits ALL your needs.
As your tools and edge cases grow, you deserve an extensible and open ELT solution that eliminates the time you spend on building and maintaining data pipelines
Leverage the largest catalog of connectors
Cover your custom needs with our extensibility
Free your time from maintaining connectors, with automation
- Automated schema change handling, data normalization and more
- Automated data transformation orchestration with our dbt integration
- Automated workflow with our Airflow, Dagster and Prefect integration
Reliability at every level
Airbyte Open Source
Airbyte Cloud
Airbyte Enterprise
Why choose Airbyte as the backbone of your data infrastructure?
Keep your data engineering costs in check
Get Airbyte hosted where you need it to be
- Airbyte Cloud: Have it hosted by us, with all the security you need (SOC2, ISO, GDPR, HIPAA Conduit).
- Airbyte Enterprise: Have it hosted within your own infrastructure, so your data and secrets never leave it.
White-glove enterprise-level support
Including for your Airbyte Open Source instance with our premium support.
Fnatic, based out of London, is the world's leading esports organization, with a winning legacy of 16 years and counting in over 28 different titles, generating over 13m USD in prize money. Fnatic has an engaged follower base of 14m across their social media platforms and hundreds of millions of people watch their teams compete in League of Legends, CS:GO, Dota 2, Rainbow Six Siege, and many more titles every year.
Ready to get started?
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Microsoft Teams is a collaborative chat-based workspace designed to enable collaborative teamwork across the Microsoft Office apps (Excel, PowerPoint, OneNote, SharePoint, Word, etc.). Workers can shift between applications within the suite without exiting the platform. Teams can chat through private or standard channels to share insights and ideas on projects in real time. Microsoft Teams streamlines the work process and brings teams together to complete projects more productively.
Microsoft Teams API provides access to a wide range of data that can be used to enhance the functionality of the platform. The following are the categories of data that can be accessed through the API:
1. Teams and Channels: Information about the teams and channels in which the user is a member, including their names, descriptions, and membership details.
2. Messages and Conversations: Access to messages and conversations within a channel, including the content of the messages, the sender and recipient details, and the time and date of the messages.
3. Files and Documents: Access to files and documents shared within a channel, including their names, sizes, and types.
4. Meetings and Calls: Information about scheduled meetings and calls, including the time, date, and participants.
5. Users and Groups: Information about users and groups within the organization, including their names, email addresses, and roles.
6. Apps and Bots: Access to third-party apps and bots integrated with Microsoft Teams, including their names, descriptions, and functionality.
7. Settings and Configuration: Access to the settings and configuration options for Microsoft Teams, including user preferences, notification settings, and security settings.
Overall, the Microsoft Teams API provides a comprehensive set of data that can be used to build custom applications and integrations that enhance the functionality of the platform.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.