Top companies trust Airbyte to centralize their Data
Sync your Data
Ship more quickly with the only solution that fits ALL your needs.
As your tools and edge cases grow, you deserve an extensible and open ELT solution that eliminates the time you spend on building and maintaining data pipelines
Leverage the largest catalog of connectors
Cover your custom needs with our extensibility
Free your time from maintaining connectors, with automation
- Automated schema change handling, data normalization and more
- Automated data transformation orchestration with our dbt integration
- Automated workflow with our Airflow, Dagster and Prefect integration
Reliability at every level
Airbyte Open Source
Airbyte Cloud
Airbyte Enterprise
Why choose Airbyte as the backbone of your data infrastructure?
Keep your data engineering costs in check
Get Airbyte hosted where you need it to be
- Airbyte Cloud: Have it hosted by us, with all the security you need (SOC2, ISO, GDPR, HIPAA Conduit).
- Airbyte Enterprise: Have it hosted within your own infrastructure, so your data and secrets never leave it.
White-glove enterprise-level support
Including for your Airbyte Open Source instance with our premium support.
Fnatic, based out of London, is the world's leading esports organization, with a winning legacy of 16 years and counting in over 28 different titles, generating over 13m USD in prize money. Fnatic has an engaged follower base of 14m across their social media platforms and hundreds of millions of people watch their teams compete in League of Legends, CS:GO, Dota 2, Rainbow Six Siege, and many more titles every year.
Ready to get started?
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
My Hours was launched back in 2002 and it is a cloud-based time-tracking solution best suited for small teams and freelancers. Since then My Hours has been rewritten twice to meet the growing demands and it is a product of Spica, a company headquartered in Ljubljana with 100+ employees. The users of My Hours can start time tracking on unlimited projects and tasks in seconds which easily generates insightful reports and create invoices.
BigQuery is an enterprise data warehouse that draws on the processing power of Google Cloud Storage to enable fast processing of SQL queries through massive datasets. BigQuery helps businesses select the most appropriate software provider to assemble their data, based on the platforms the business uses. Once a business’ data is acculumated, it is moved into BigQuery. The company controls access to the data, but BigQuery stores and processes it for greater speed and convenience.
My Hours' API provides access to a variety of data related to time tracking and project management. The following are the categories of data that can be accessed through the API:
1. Time tracking data: This includes information about the time spent on tasks, projects, and clients. It includes start and end times, duration, and any notes or comments associated with the time entry.
2. Project data: This includes information about the projects being worked on, such as project name, description, status, and associated tasks.
3. Task data: This includes information about the individual tasks within a project, such as task name, description, status, and associated time entries.
4. Client data: This includes information about the clients being worked with, such as client name, contact information, and associated projects.
5. User data: This includes information about the users of the My Hours platform, such as user name, email address, and associated time entries, projects, and tasks.
Overall, the My Hours API provides a comprehensive set of data that can be used to analyze and optimize time tracking and project management processes.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.