Top companies trust Airbyte to centralize their Data
Select your source
Select your destination
Sync your Data
Ship more quickly with the only solution that fits ALL your needs.
As your tools and edge cases grow, you deserve an extensible and open ELT solution that eliminates the time you spend on building and maintaining data pipelines
Leverage the largest catalog of connectors
Cover your custom needs with our extensibility
Free your time from maintaining connectors, with automation
- Automated schema change handling, data normalization and more
- Automated data transformation orchestration with our dbt integration
- Automated workflow with our Airflow, Dagster and Prefect integration
Reliability at every level
Airbyte Open Source
Airbyte Cloud
Airbyte Enterprise
Why choose Airbyte as the backbone of your data infrastructure?
Keep your data engineering costs in check
Get Airbyte hosted where you need it to be
- Airbyte Cloud: Have it hosted by us, with all the security you need (SOC2, ISO, GDPR, HIPAA Conduit).
- Airbyte Enterprise: Have it hosted within your own infrastructure, so your data and secrets never leave it.
White-glove enterprise-level support
Including for your Airbyte Open Source instance with our premium support.
Fnatic, based out of London, is the world's leading esports organization, with a winning legacy of 16 years and counting in over 28 different titles, generating over 13m USD in prize money. Fnatic has an engaged follower base of 14m across their social media platforms and hundreds of millions of people watch their teams compete in League of Legends, CS:GO, Dota 2, Rainbow Six Siege, and many more titles every year.
Ready to get started?
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
NASA stands for The National Aeronautics and Space Administration is a United States government agency that is responsible for science and technology related to air and space. NASA connector makes NASA data, including imagery, eminently accessible to users. NASA has since sponsored space expeditions, both human and mechanical, which have yielded vital information about the solar system and universe. NASA conducts research, testing, and development to advance aeronautics, including electric momentum and supersonic flight, and so on.
BigQuery is an enterprise data warehouse that draws on the processing power of Google Cloud Storage to enable fast processing of SQL queries through massive datasets. BigQuery helps businesses select the most appropriate software provider to assemble their data, based on the platforms the business uses. Once a business’ data is acculumated, it is moved into BigQuery. The company controls access to the data, but BigQuery stores and processes it for greater speed and convenience.
NASA's API provides access to a wide range of data related to space exploration, astronomy, and earth science. The following are the categories of data that can be accessed through NASA's API:
1. Astronomy data: This includes data related to stars, planets, galaxies, and other celestial bodies.
2. Earth science data: This includes data related to the Earth's atmosphere, oceans, land, and climate.
3. Spacecraft data: This includes data related to NASA's spacecraft, such as their location, trajectory, and status.
4. Satellite data: This includes data collected by NASA's satellites, such as images of the Earth's surface, weather data, and environmental data.
5. Mars data: This includes data related to NASA's exploration of Mars, such as images, videos, and scientific data collected by the Mars rovers.
6. International Space Station data: This includes data related to the International Space Station, such as its location, crew, and scientific experiments being conducted on board.
7. Education data: This includes data related to NASA's educational programs, such as lesson plans, educational resources, and student opportunities.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.