Top companies trust Airbyte to centralize their Data
Sync your Data
Ship more quickly with the only solution that fits ALL your needs.
As your tools and edge cases grow, you deserve an extensible and open ELT solution that eliminates the time you spend on building and maintaining data pipelines
Leverage the largest catalog of connectors
Cover your custom needs with our extensibility
Free your time from maintaining connectors, with automation
- Automated schema change handling, data normalization and more
- Automated data transformation orchestration with our dbt integration
- Automated workflow with our Airflow, Dagster and Prefect integration
Reliability at every level
Airbyte Open Source
Airbyte Cloud
Airbyte Enterprise
Why choose Airbyte as the backbone of your data infrastructure?
Keep your data engineering costs in check
Get Airbyte hosted where you need it to be
- Airbyte Cloud: Have it hosted by us, with all the security you need (SOC2, ISO, GDPR, HIPAA Conduit).
- Airbyte Enterprise: Have it hosted within your own infrastructure, so your data and secrets never leave it.
White-glove enterprise-level support
Including for your Airbyte Open Source instance with our premium support.
Fnatic, based out of London, is the world's leading esports organization, with a winning legacy of 16 years and counting in over 28 different titles, generating over 13m USD in prize money. Fnatic has an engaged follower base of 14m across their social media platforms and hundreds of millions of people watch their teams compete in League of Legends, CS:GO, Dota 2, Rainbow Six Siege, and many more titles every year.
Ready to get started?
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
Square created innovative technology to aggregate merchant services and mobile payments into one easy-to-use service. With the goal of simplifying commerce through technology, Square offers mobile payment capability to businesses and individuals, helping them manage business and access financing in one place. Their free Cash App provides mobile users the ability to send and receive money, and their free Square Point-of-Sale application allows merchants to process payments using a smartphone.
An object-relational database management system, PostgreSQL is able to handle a wide range of workloads, supports multiple standards, and is cross-platform, running on numerous operating systems including Microsoft Windows, Solaris, Linux, and FreeBSD. It is highly extensible, and supports more than 12 procedural languages, Spatial data support, Gin and GIST Indexes, and more. Many web, mobile, and analytics applications use PostgreSQL as the primary data warehouse or data store.
Square's API provides access to a wide range of data related to a merchant's business operations. The following are the categories of data that can be accessed through Square's API:
1. Transactions: This includes information about all transactions processed through Square, such as payment amount, date and time, customer information, and payment method.
2. Inventory: This includes information about the merchant's inventory, such as product name, SKU, price, and quantity.
3. Customers: This includes information about the merchant's customers, such as name, email address, phone number, and transaction history.
4. Employees: This includes information about the merchant's employees, such as name, email address, phone number, and role.
5. Orders: This includes information about the merchant's orders, such as order number, customer information, and order status.
6. Locations: This includes information about the merchant's physical locations, such as address, phone number, and business hours.
7. Refunds: This includes information about refunds processed through Square, such as refund amount, date and time, and reason for refund.
8. Settlements: This includes information about the merchant's settlements, such as payment amount, date and time, and payment method.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.