Summarize


Building your pipeline or Using Airbyte
Airbyte is the only open source solution empowering data teams to meet all their growing custom business demands in the new AI era.
- Inconsistent and inaccurate data
- Laborious and expensive
- Brittle and inflexible
- Reliable and accurate
- Extensible and scalable for all your needs
- Deployed and governed your way
Start syncing with Airbyte in 3 easy steps within 10 minutes



Take a virtual tour
Demo video of Airbyte Cloud
Demo video of AI Connector Builder
Setup Complexities simplified!
Simple & Easy to use Interface
Airbyte is built to get out of your way. Our clean, modern interface walks you through setup, so you can go from zero to sync in minutes—without deep technical expertise.
Guided Tour: Assisting you in building connections
Whether you’re setting up your first connection or managing complex syncs, Airbyte’s UI and documentation help you move with confidence. No guesswork. Just clarity.
Airbyte AI Assistant that will act as your sidekick in building your data pipelines in Minutes
Airbyte’s built-in assistant helps you choose sources, set destinations, and configure syncs quickly. It’s like having a data engineer on call—without the overhead.
What sets Airbyte Apart
Modern GenAI Workflows
Move Large Volumes, Fast
An Extensible Open-Source Standard
Full Control & Security
Fully Featured & Integrated
Enterprise Support with SLAs
What our users say

Andre Exner

"For TUI Musement, Airbyte cut development time in half and enabled dynamic customer experiences."

Chase Zieman

“Airbyte helped us accelerate our progress by years, compared to our competitors. We don’t need to worry about connectors and focus on creating value for our users instead of building infrastructure. That’s priceless. The time and energy saved allows us to disrupt and grow faster.”

Rupak Patel
"With Airbyte, we could just push a few buttons, allow API access, and bring all the data into Google BigQuery. By blending all the different marketing data sources, we can gain valuable insights."
Begin by ensuring you have the necessary permissions to access NetSuite's SuiteTalk API. Log in to your NetSuite account and navigate to Setup > Company > Enable Features. Under the "SuiteCloud" tab, ensure the "SOAP Web Services" feature is enabled. Then, create an integration record by going to Setup > Integration > Manage Integrations > New. This record will provide you with a consumer key and secret for API authentication.
Write a script in your preferred programming language (e.g., Python, Java) to interact with NetSuite's SOAP API. Use the consumer key and secret along with an OAuth 1.0 library to authenticate. Construct a SOAP request to retrieve the required data. You can use NetSuite's WSDL to understand the data structures and operations available for extraction.
Once the data is extracted, process it according to your needs. This might involve transforming the data into a format suitable for Redis, such as converting XML to JSON. This step ensures the data is optimized for storage and retrieval in Redis.
Install and configure a Redis server on your local machine or a remote server. Ensure that Redis is running and accessible. You can download and install Redis from the official website (https://redis.io/download) and start the server using the command `redis-server`.
In the same script, or a new one, connect to your Redis instance using a Redis client library for your chosen programming language. Use this connection to write the transformed data into Redis. Decide on a data structure (e.g., strings, hashes, lists) that best fits your use case, and use Redis commands to store the data accordingly.
With both extraction and loading scripts complete, automate the process by creating a cron job (on Linux/Mac) or a Task Scheduler task (on Windows). This will allow the data transfer process to run at regular intervals, ensuring that Redis is updated with the latest data from NetSuite.
Regularly monitor the data transfer process to ensure reliability and efficiency. Check for any errors or performance bottlenecks. Optimize the data extraction and loading scripts for speed and resource usage. This might involve adjusting the data batch size, optimizing queries, or tuning Redis configurations.
By following these steps, you will be able to effectively move data from NetSuite to Redis without relying on third-party connectors or integrations.
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
NetSuite is a comprehensive cloud-based business management suite that provides an integrated platform for managing various business processes, including financials, customer relationship management (CRM), e-commerce, inventory management, and more. It offers a unified system that eliminates data silos and enables real-time visibility across an organization. NetSuite's core features include financial management, order and billing management, supply chain and warehouse management, project management, and customer support management. With its flexible and scalable architecture, NetSuite can adapt to the unique needs of businesses across different industries and sizes. By consolidating multiple business functions into a single platform, NetSuite streamlines operations, improves efficiency, and provides actionable insights for informed decision-making.
Netsuite's API provides access to a wide range of data categories, including:
1. Financial data: This includes information related to accounting, billing, payments, and financial reporting.
2. Customer data: This includes data related to customer profiles, orders, transactions, and interactions.
3. Inventory data: This includes information related to inventory levels, stock movements, and product information.
4. Sales data: This includes data related to sales orders, quotes, and opportunities.
5. Marketing data: This includes data related to campaigns, leads, and marketing automation.
6. Support data: This includes data related to customer support cases, tickets, and resolutions.
7. Employee data: This includes data related to employee profiles, time tracking, and payroll.
8. Custom data: This includes data related to custom fields, records, and workflows that are specific to a company's unique needs.
Overall, Netsuite's API provides access to a comprehensive set of data categories that can be used to support a wide range of business processes and decision-making activities.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.
What should you do next?
Hope you enjoyed the reading. Here are the 3 ways we can help you in your data journey: