Top companies trust Airbyte to centralize their Data
Sync your Data
Ship more quickly with the only solution that fits ALL your needs.
As your tools and edge cases grow, you deserve an extensible and open ELT solution that eliminates the time you spend on building and maintaining data pipelines
Leverage the largest catalog of connectors
Cover your custom needs with our extensibility
Free your time from maintaining connectors, with automation
- Automated schema change handling, data normalization and more
- Automated data transformation orchestration with our dbt integration
- Automated workflow with our Airflow, Dagster and Prefect integration
Reliability at every level
Airbyte Open Source
Airbyte Cloud
Airbyte Enterprise
Why choose Airbyte as the backbone of your data infrastructure?
Keep your data engineering costs in check
Get Airbyte hosted where you need it to be
- Airbyte Cloud: Have it hosted by us, with all the security you need (SOC2, ISO, GDPR, HIPAA Conduit).
- Airbyte Enterprise: Have it hosted within your own infrastructure, so your data and secrets never leave it.
White-glove enterprise-level support
Including for your Airbyte Open Source instance with our premium support.
Fnatic, based out of London, is the world's leading esports organization, with a winning legacy of 16 years and counting in over 28 different titles, generating over 13m USD in prize money. Fnatic has an engaged follower base of 14m across their social media platforms and hundreds of millions of people watch their teams compete in League of Legends, CS:GO, Dota 2, Rainbow Six Siege, and many more titles every year.
Ready to get started?
FAQs
What is ETL?
ETL, an acronym for Extract, Transform, Load, is a vital data integration process. It involves extracting data from diverse sources, transforming it into a usable format, and loading it into a database, data warehouse or data lake. This process enables meaningful data analysis, enhancing business intelligence.
A software developed to optimize communication for small businesses and enterprises worldwide, Zendesk Chat is a live chat application that enables businesses to establish a more personal touch in their customer support. Designed to work on iPhone and iPad as well as computers, Zen Chat provides the ability to monitor, manage, and engage with website visitors from any location; sends notifications when visitors are on a website; features shortcuts to reduce typing time and improve agents’ response time; and more.
DuckDB is an in-process SQL OLAP database management system. It has strong support for SQL. DuckDB is borrowing the SQLite shell implementation. Each database is a single file on disk. It’s analogous to “ SQLite for analytical (OLAP) workloads” (direct comparison on the SQLite vs DuckDB paper here), whereas SQLite is for OLTP ones. But it can handle vast amounts of data locally. It’s the smaller, lighter version of Apache Druid and other OLAP technologies.
Zendesk Chat's API provides access to a wide range of data related to customer interactions and support activities. The following are the categories of data that can be accessed through the API:
1. Chat data: This includes information about chat sessions, such as chat duration, chat transcripts, and chat ratings.
2. Agent data: This includes information about agents, such as their availability status, chat history, and performance metrics.
3. Visitor data: This includes information about visitors, such as their location, browser type, and chat history.
4. Ticket data: This includes information about support tickets, such as ticket status, priority, and tags.
5. Analytics data: This includes information about chat and support activity, such as chat volume, response times, and customer satisfaction scores.
6. Custom data: This includes any custom data that has been added to the Zendesk Chat platform, such as custom fields or tags.
Overall, the Zendesk Chat API provides a comprehensive set of data that can be used to analyze and improve customer support operations.
What is ELT?
ELT, standing for Extract, Load, Transform, is a modern take on the traditional ETL data integration process. In ELT, data is first extracted from various sources, loaded directly into a data warehouse, and then transformed. This approach enhances data processing speed, analytical flexibility and autonomy.
Difference between ETL and ELT?
ETL and ELT are critical data integration strategies with key differences. ETL (Extract, Transform, Load) transforms data before loading, ideal for structured data. In contrast, ELT (Extract, Load, Transform) loads data before transformation, perfect for processing large, diverse data sets in modern data warehouses. ELT is becoming the new standard as it offers a lot more flexibility and autonomy to data analysts.